| 研究生: |
黃裕霖 Huang, Yu-Lin |
|---|---|
| 論文名稱: |
以哈密頓迴路為基礎之配電狀態估計電表數量與不良數據權衡 Trade-off between Number of Meters and Bad Data for Hamiltonian Cycle Based Distribution State Estimation |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 狀態估計 、權重最小平方法 、哈密頓迴路 、卡方檢定 、最大殘正規化殘差值法 、最大白化殘差值法 |
| 外文關鍵詞: | State Estimation, Weighted Least Squares, Hamiltonian Cycle, Largest Normalized Residual, Largest Whitening Residual |
| 相關次數: | 點閱:190 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
狀態估計所牽涉的議題眾多,如對於如何決定量測位置以及獲得良好的狀態估計結果,本文針對電表數量與不良數據權衡問題,提出基於哈密頓迴路的估計方法,藉由誤差低的電表量測數據獲得全網路未知狀態的估計值,該方法的優點在於計算上較為精簡快速,也因為沒有納入誤差較高的偽量測關係,準確性能有效提升,同時可以辨識出不良數據會影響到的估計匯流排狀態。為驗證該方法的成效,本文考慮三種不同匯流排數的三相配電系統與四種不同類型之量測案例,搭配模擬假設、資料取得方式、不良數據排除方法、與估計誤差容忍度。
本研究模擬使用DIgSILENT建立匯流排模型、DPL(DIgSILENT Programming Language) 產生MATLAB所需建模參數及數據、MATLAB建立數學模型並進行估計,狀態估計部分有權重最小平方法、哈密頓迴路的估計方法,不良數據偵測與辨識有卡方檢定、最大正規化殘差值法與最大白化殘差值法。在電表數量的條件不同下,對於所辨識出來的不良數據會由相對應的替換數值取代,而模擬結果顯示皆能符合最初訂定規範及標準,從而釐清電表數量與不良數據間之權衡問題。
There are many issues involved in state estimation, such as how to determine the location of the measurement and obtain good state estimation results. This paper focuses on the trade-off between the number of meters and bad data that proposes a state estimation method based on Hamiltonian loop estimation which can estimate value of the unknown state of the whole network only by meter data in low error. The advantage of this method is simple, fast, and accurate that because the pseudo-measurement relationship with high error is not included. Also, this method can recognize the influence state of the bus by the specific bad data. In order to verify the effectiveness of the method, three different types of three-phase distribution systems with four different types of measurement cases considered by simulation hypothesis, data acquisition method, bad data elimination method, and the estimation error tolerance.
This simulation use DIgSILENT to build the bus system model, DPL (DIgSILENT programming language) to generate the modeling parameters in MATLAB, and MATLAB to establish the mathematical model and to estimate. In the part of state estimation, there are weighted least square method and Hamiltonian loop estimation method. In the part of Bad data detection and identification, there are chi-square verification, maximum residual normalized residual method and maximum whitened residual method. In different condition with the number of meters, for those identified bad data will be replaced by related value and simulation shows that the result meets the original specifications and standards.
[1] “低壓智慧電表推動規劃(智慧電網推動)”,經濟部能源局,有效網址: https://energywhitepaper.tw/upload/201711/151135385492268.pdf
[2] “TAIPOWER為民服務白皮書”,台灣電力公司,有效網址: https://www.taipower.com.tw/upload/119/2019031209251447813.pdf
[3] T. Manuel Ferreira dos Santos, “Mesh grid structure vs. radial structure Performance and perspectives of evolution,” 2013. [Online]. Available: https://fenix.tecnico.ulisboa.pt/downloadFile/395146017210/ExtendedAbstract.pdf
[4] W. H. Kersting, “Distribution System Modeling and Analysis”, Las Cruces, New Mexico: CRC. Press LLC, Aug. 2002.
[5] 王耀庭、饒祐禎,“配電自動化系統之應用功能與通訊協定之研討”,台灣電力公司,2008年。
[6] “台電電網即時狀態監測系統建立與網際網路應用之介紹”,歐華科技公司,有效網址: http://www.adx.tw/System/pmusys.htm
[7] “智慧型AMI電表及電子式電表概要介紹”,台灣電力公司配電處,有效網址: http://www.tteca-net.org.tw/eie/bg/html/doc/member/%E6%99%BA%E6%85%A7%E5%9E%8BAMI%E9%9B%BB%E8%A1%A8%E5%8F%8A%E9%9B%BB%E5%AD%90%E5%BC%8F%E9%9B%BB%E8%A1%A8%E6%A6%82%E8%A6%81%E4%BB%8B%E7%B4%B9V2.pdf
[8] “IEC防竊電智慧電表系統”,凌群電腦公司,有效網址: http://www.fbblife.com.tw/04967550/article/content.aspx?ArticleID=1779
[9] 黃怡碩,“智慧電表基礎建設之簡介”,工業技術研究院綠能所,2011年。
[10] “低壓AMI通訊介面單元需求規格”,台灣電力公司,有效網址: https://www.taipower.com.tw/upload/165/2018062514341223315.docx
[11] M. Shahidehpour and Y. Wang, “Parallel and Distributed State Estimation,” in Communication and Control in Electric Power Systems, 1st ed. Hoboken, NJ, USA, 2003, pp.235-265.
[12] G. Golub, V. Klema, G. W. Stewart, "Rank degeneracy and least squares problems", Stanford University, Stanford, 1976. [Online]. Available: http://www.nber.org/papers/w165
[13] K. A. Clements, B. F. Wollenberg, "An Algorithm for Observability Determination in Power System State Estimation", in IEEE Summer Power Meeting, San Francisco, pp.20-25, Jul. 1975.
[14] M. E. Baran, J. Jung and T. E. McDermott, “Including voltage measurements in branch current state estimation for distribution systems,” in IEEE Power & Energy Society General Meeting, pp. 26-30, Calgary, AB, Canada, Jul. 2009.
[15] Y. L. Lo, S. C. Huang, and C. N. Lu, “Non-technical loss detection using smart distribution network measurement data,” in IEEE PES Innovative Smart Grid Technologies, Tianjin, China, pp. 21-24, May. 2012.
[16] J. Peppanen, M. J. Reno, R. J. Broderick, and S. Grijalva, “Distribution System Model Calibration With Big Data From AMI and PV Inverters,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2497-2506, Sep. 2016.
[17] A. Bose and K. A. Clements, “Real-time modeling of power networks,” Proc. IEEE, vol. 75, no. 12, pp. 1607–1622, Dec. 1987.
[18] W. W. Kotiuga, “Development of a least absolute value power system tracking state estimator,” IEEE Trans. Power App. Syst., vol. PAS-104, no. 5, pp. 1160–1166, May. 1985.
[19] M. K. Celik and A. Abur, “A robust WLAV state estimator using transformations,” IEEE Trans. Power Syst., vol. 7, no. 1, pp. 106–113, Feb. 1992.
[20] Hasheminamin, M., Agelidis, V.G., and Heidari, A., “Impact study of high PV penetration in low and medium-voltage networks when considering residential and industrial load profile,” in 2013 ICRERA, Madrid, pp. 347–352, Mar. 2013
[21] Brandalik, R., Waeresch, D., Wellssow, and W.H., “Approximate active power distributions for standard household loads,” in 2016 PMAPS, Beijing, China, Oct. 2016.
[22] A. Abdel-Majeed, C. Kattmann, S. Tenbohlen, and R. Saur, “Usage of artificial neural networks for pseudo measurement modeling in low voltage distribution systems,” in 2014 IEEE PES General Meeting Conf. Exposition, National Harbor, MD, Jul. 2014.
[23] J. Zhao, G. Zhang, Z. Yang Dong, and M. La Scala, “Robust Forecasting Aided Power System State Estimation Considering State Correlations,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2658-2666, Jul. 2018.
[24] R. Singh, B. C. Pal, R. A. Jabr, and R. B. Vinter, “Meter placement for distribution system state estimation: An ordinal optimization approach,” IEEE Trans. Power Systems, vol. 26, no. 4, pp. 2328–2335, Nov. 2011.
[25] X. Chen, J. Lin, C. Wan, and Y. Song, “Y. H. Liao and C.M. Lai, “Optimal Meter Placement for Distribution Network State Estimation: A Circuit Representation Based MILP Approach, ” IEEE Trans. Power Systems, vol. 31, no. 6, pp. 4357-4370, Nov. 2016.
[26] S. Prasad and D. Mallesham Vinod Kumar, “Robust meter placement for active distribution state estimation using a new multi-objective optimisation model,” IET Science Measurement & Technology, vol. 12, no. 8, pp. 1047-1057, Nov. 2018.
[27] 林委廷,“配電系統狀態估計之不良數據檢測”,中山大學電機工程學系研究所碩士論文,未出版,2015。
[28] V. D. Krsman and A. T. Sarić, “Bad area detection and whitening transformation-based identification in three-phase distribution state estimation,” IET Transmission & Distribution, vol. 11, no. 9, pp. 2351-2361, Jul. 2017.
[29] S. Armina Foroutan and Farzad R. Salmasi, “Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method,” IET Cyber-Physical Systems: Theory & Applications, vol. 2, no. 4, pp. 161-171, Nov. 2017.
[30] N. Mohd Nor, R. Jegatheesan, and P. Nallagownden,“Newton-Raphson State Estimation Solution Employing Systematically Constructed Jacobian Matrix,” WASET International Journal of Electrical and Computer Engineering, vol. 2, no. 6, Oct. 2009.
[31] M. Göl and A. Abur, " A modified Chi-Squares test for improved bad data detection," in 2015 IEEE Eindhoven PowerTech, Eindhoven, Netherlands, Sep. 2015.
[32] A. Monticelli, P. Abreu, and A. Garcia, "Fast Decoupled State Estimator and Bad Data Processing," IEEE Trans. on Power Apparatus and Systems, vol. 98, no. 5, pp. 1645-1652, Jul. 2007.
[33] K. L. Lo, P. S. Ong, R. D. McColl, A. M. Moffatt, and J. L. Sulley, "Development of a Static State Estimation Part I: Estimation and Bad data Suppression", IEEE Transactions on Power Apparatus and Systems, vol. 7, no. 3, pp. 1378-1385, Aug. 1983.
[34] F. C. Schweppe, J. Kohlas, A. Fiechter, and E. Handschin, "Bad data analysis for power system state estimation," IEEE Transactions on Power Apparatus and Systems, vol. 94, no. 2, pp. 329-337, Mar. 1975.
[35] S. Wang, E. Yu, and N. Xiang, "A New Approach for Detection and Identification of Multiple Bad Data in Power System State Estimation", IEEE Transactions on Power System State Estimation, vol. 101, no. 2, pp. 454-462, Feb. 1982.
[36] A. Kessy, A. Lewin, and Korbinian Strimmer, " Optimal whitening and decorrelation ", arXiv preprint arXiv: 1512.00809, Dec. 2015.
[37] T. Van Cutsem and L. Mili, M. Ribbens-Pavella, "Hypothesis testing identification: a new method for bad data analysis in power system state estimation", IEEE Transactions on Power Apparatus and Systems, vol. 101, no. 2, pp. 3239-3252, Nov. 1984.
[38] M. Sohel Rahman and M. Kaykobad, "On Hamiltonian cycles and Hamiltonian paths", Elsevier Information Processing Letters, vol. 94, no. 2, pp. 37–41, Apr. 2005.
[39] E. Bompard, E. Carpaneto, G. Chicco, and R. Napoli, " Convergence of the backward/forward sweep method for the load-flow analysis of radial distribution systems", Elsevier Electrical Power and Energy Systems, vol. 22, no. 7, pp. 521-530, Oct. 2000.
[40] W. H. Kersting, “Radial distribution test feeders,” IEEE Trans. PowerSyst., vol. 6, no. 3, pp. 975–985, Oct. 2002
[41] “IEEE 37 Test Feeders.” [Online]. Available: http://sites.ieee.org/pes-testfeeders/files/2017/08/feeder37.zip
[42] “IEEE 123 Test Feeders.” [Online]. Available: http://sites.ieee.org/pes-testfeeders/files/2017/08/feeder123.zip