簡易檢索 / 詳目顯示

研究生: 陳正泓
Chen, Jheng-Hong
論文名稱: 抗菌型鈣基骨泥性質之初步探討
Investigation of properties of antibacterial calcium-based cement
指導教授: 陳瑾惠
Chen, Jiin-Huey
朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 121
中文關鍵詞: 抗菌鈣基骨泥生物相容性
外文關鍵詞: antibacterial, calcium-based cement, biocompatibility
相關次數: 點閱:164下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了降低骨科手術術後感染的風險,因而本實驗進行抗菌型骨泥的探討,選擇C化合物當抗菌劑加入具有良好生物相容性與骨誘導性的c-cpc與CSH的複合材中。
    本實驗使用金黃色葡萄球菌當抗菌測試實驗的菌種,測試抗菌型鈣基骨泥的抗菌效果,並選擇C化合物添加入複合材(cement)中,探討此抗菌型骨泥的各種性質,挑選出具有適當工作時間、硬化時間及良好崩解性質之抗菌型鈣基骨泥條件來進行長期浸泡的實驗。將硬化劑Lx(Lx)添加1vol%Px(PX)後,可明顯改善抗菌型鈣基骨泥之注射崩解性。
    抗菌型鈣基骨泥未浸泡Hanks’ solution前有明顯抗菌效果,且在浸泡Hanks’ solution一天或更久後觀察到大量巨大孔洞且孔隙率也隨之增加,在浸泡三天後因YZ析出強化,使骨泥強度明顯上升,且細胞存活率達70%以上,證明此抗菌型鈣基骨泥具有生物相容性,有潛質應用於骨頭修損。

    In order to reduce the risk of postoperative infection in orthopedic surgery, lithium carbonate as an antibacterial agent is added into the c-cpc which has good biocompatibility and osteoinduction.
    The Staphylococcus aureus strains were used to investagate the antibacterial effect of the antibacterial calcium-based cement. In addition, the structure, properties and cytotoxicity of the present cement were also investigated and evaluate its suitability for being used as a bone void filler material. Then, we explore various properties of the antibacterial calcium-based cement, and choose the appropriate properties, including the appropriate working time, setting time and without dispersion, for further long-term immersion experiments. The problem of the dispersion was improved by adding 1 volume % PX into the diammonium hydrogen phosphate (Lx) hardening solution.
    Before being immersed in the Hanks’ solution, the antibacterial calcium-based cement has the obvious antibacterial property. And after being immersed in the Hanks’ solution for 1 day or longer, lots of large pores were observed and the porosity values increased. The strength of the antibacterial calcium-based cement increases due to the precipitation of YZ, the the cell viability value of present cement is greater than 70% after being immersed in the Hanks’ solution for 3 days. These experimental results showed that the antibacterial calcium-based cement has the good biocompatibility, and initial antibacterial ability, indicating that it has the potential to be applied on the bone repair damage.

    中文摘要 I ABSTRACT II 誌謝 III 總目錄 IV 表目錄 VIII 圖目錄 X 第一章 總序論 1 1-1 生醫材料的簡介 1 1-2 生醫材料的定義 2 1-3 理想生醫材料的要求 3 1-4 生醫材料的分類 4 1-5 生醫陶瓷種類 10 1-6 骨水泥的簡介 13 1-6-1 骨取代材的性質及製程要求 13 1-6-2 骨水泥的定義 15 1-6-3 理想骨水泥的要求 15 1-6-4 骨水泥應用方式 16 1-6-5 骨水泥的注射性 19 1-7 常見臨床難題─骨水泥外漏引起栓塞(EMBOLISM) 19 1-8 台灣生醫材料產業現況 20 第二章 文獻回顧 25 2-1 磷酸鈣簡介 25 2-1-1 磷酸鈣鹽類生醫材料的發展 25 2-1-2 磷酸鈣鹽類的性質簡介 26 2-1-3 鈣磷系骨水泥簡介 32 2-2 硫酸鈣簡介 40 2-2-1 硫酸鈣的發展 40 2-2-2 硫酸鈣的性質簡介 41 2-3 多相磷酸鈣骨水泥 47 2-3-1 CASO4・1/2H2O/ HA COMPOSITE 47 2-3-2 CASO4・1/2H2O/Α-TCP COMPOSITE 48 2-3-3 CASO4・2H2O/Α-TCP COMPOSITE 52 2-3-4 TTCP / DCPA/CASO4・1/2H2O COMPOSITE 54 2-4 骨科植入醫材的感染風險 56 2-5 骨科植入醫材抗菌對策文獻回顧 58 2-6 研究目的 61 第三章 實驗原理及步驟 62 3-1 實驗使用藥品與材料介紹 62 3-1-1 TSB液態細菌培養基(TRYPTIC SOY BROTH MEDIUM) 62 3-1-2 TSB固態細菌培養基(TRYPTIC SOY BROTH AGAR PLATE) 62 3-2 實驗步驟與分析方法 63 3-2-1 抗菌型鈣基骨泥原始粉末製備 63 3-2-2 崩解性質的測試 64 3-2-3 抗壓試片製作與強度測試 64 3-2-4 工作與硬化時間測量 65 3-2-5 PH值的量測 67 3-2-6 X-RAY DIFFRACTION(XRD)分析 68 3-2-7 SCANNING ELECTRON MICROSCOPY(SEM)表面觀察與ENERGY DISPERSIVE SPECTROMETERS (EDS)分析 70 3-2-8 孔隙度(POROSITY)、重量損失測試 73 3-2-9 抗菌測試 75 3-2-10 細胞毒性測試(CYTOTOXICITY ASSAY) 76 第四章 結果與討論 80 4-1 抗菌型鈣基骨泥工作時間、硬化時間及崩解性測試 80 4-1-1 抗菌型鈣基骨泥工作時間和硬化時間測試 80 4-1-2 抗菌型鈣基骨泥崩解性測試 82 4-2 抗菌型鈣基骨泥浸泡SBF之PH值變化 90 4-3 抗菌型鈣基骨泥浸泡SBF長時間分析 94 4-4 抗菌型鈣基骨泥浸泡SBF的重量損失率及孔隙率 95 4-5 抗菌型鈣基骨泥浸泡SBF的抗壓強度分析 98 4-6 抗菌測試 101 4-7 細胞毒性測試 103 4-8 抗菌型鈣基骨泥SEM微結構觀察及EDS MAPPING分析 104 第五章 結論 112 參考文獻 113

    Albee F, Morrison H. Studies in bone growth.Annals of Surg 1920;71:32-38.
    Akif Ince, MD, Norbert Schütze, PhD, Christian Hendrich, MD, Roger Thull, PhD, Jochen Eulert, MD, and Jochen F. Löhr, MD (FRCSC). In Vitro Investigation of Orthopedic Titanium-Coated and Brushite-Coated Surfaces Using Human Osteoblasts in the Presence of Gentamycin, 2008.
    Amathieu L. and Boistelle R., Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth,1988;88: 184.
    Andries S. Coetzee, MMed (OLR). Regeneration of Bone in the Presence of Calcium Sulfate. Arch Otolaryngol. Vol 106, July 1980
    Block M.S, Kent T.N, Guerra. Implants in dentistry. W.B. Saunders Company,1997
    Bohner M., Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2000;31:S-D37-47.
    Bohner M. and Baumgart M., Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes, Biomaterials, 2004;25[17] 3569–3582.
    Bohner M., Gbureck U., Barralet J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment Biomaterials, 2005; 26 6423–6429
    Bohner M., New hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures; Biomaterials 2004;25 741–749.
    Breed AL., Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Traumatic hypertension of bone. Clin Orthop, 1974; 102: 227-44.
    Brown WE, Chow LC., A new calcium phosphate setting cement. J Dent Res Abs 1983;207:62-672.
    Brown WE, Chow LC., Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent 1986, No. 4612053.
    Brown WE, Chow LC., Dental resptorative cement pastes. US. Patent 1985, No. 4518430.
    Brown WE, Chow LC., Singular points in the chemistry of teeth. J Dent. Res 1975;54:74.
    Chow LC., Calcium phosphate materials: reactor response ; Adv Dent Res 2(1):181-184, August, 1988
    Chow LC, Takagi S., Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
    Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991;99(10):954-964.
    Chow L C, J. Ceram. Soc. Japan Int. Edn. 99 (1992) 927.
    Chow LC. Next generation calcium phosphate-based biomaterials. Dent Mater J. Author manuscript; available in PMC 2009 August 5.
    Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th annal international biomaterial symposium. April 1974:20-24.
    David F. Williams. On the nature of biomaterials. Biomaterials 30 (2009) 5897–5909
    Costantino PD, Friedman CD: Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994;27:1037-1074.
    Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
    de Groot K. Medical applications of calcium phosphate bioceramics. The centennial memorial issue of the ceramic society of Japan 1991;99:943-953.
    Elena F. Burguera, Hockin H. K. Xu, Michael D. Weir. Injectable and
    Rapid-Setting Calcium Phosphate Bone Cementwith Dicalcium Phosphate Dihydrate. J Biomed Mater Res Part B: Appl. Biomater 77B:126–134, 2006
    Fernaâ ndez* E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications, Journal of Materials Science: Materials in Medicine 10 (1999) 169±183
    Fukase Y, EANES' E.D, TAKAGI3 S., CHOW L.C, and BROWN W.E.; Setting Reactions and Compressive Strengths of Calcium Phosphate Cements;J Dent Res 69(12):1852-1856, December, 1990.
    F. Monticelli*, H.J. Meyer, E. Tutsch-Bauer
    Fatal pulmonary cement embolism following percutaneous
    vertebroplasty (PVP), Forensic Science International 149 (2005) 35–38
    Getter L, Bhaskar S, Cutright D, Perez B, Brady J, Driskell T, O’Hara M. Three biodegradable calcium phosphate slurry implants in bone. J Oral Surg 1972;30:263-268.
    Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
    Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat. 1982;8:131-140.
    Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-78.
    Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 1976;11:2027-35.
    Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977;1:79-92.
    Jonck LM, Grobbelaar CJ. "The biological compatibility of glass ionomer cement in joint replacement." Clin. Mater. , 1989; 4: 85-107.
    Juan Alcibar, Roberto Blanco,
    Multiple Fatal Pulmonary Embolism During Polymethyl-Methacrylate Vertebroplasty With Successful Percutaneous Retrieval of a Large Cement Fragment, 22 November 2011
    K. ISHIKAWA , S. MATSUYA , Y. MIYAMOTO, K.KAWATE,.Biocomposite,Comprehensive Structural Integrity volume 9,2007
    Kokubo T. "Recent progress in glass-based materials for biomedical applications." The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
    Köster K, Karbe E, Kramer H, Heide H, König R. Experimenteller knochenersatz durch resorbierbare calcium phosphate keramik. Langenbecks Arch Chir 1976;341:77-86.
    Lewis K. N, Thomas M. V, Puleo D. A.; Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci: Mater Med 2006;17: 531–537.
    Lewry A.J. and J. Williamsoon, "The setting of gypsum plaster partIII the effect of additives and impurities."J of materials science. Vol 29, p6085~6090, 1994.
    Lijun Wang and George H. Nancollas. Calcium Orthophosphates: Crystallization and Dissolution. Chem. Rev. 2008, 108, 4628–4669
    Marc Bohnera,*, Gamal Baroudb. Injectability of calcium phosphate pastes. Biomaterials 26 (2005) 1553–1563
    Mark V. Thomas, David A. Pule. Calcium Sulfate: Properties and Clinical Applications. J Biomed Mater Res Part B: Appl Biomater 88B: 597–610, 2009
    Mi Hyoung Moon, Keon Hyun Jo, Hwan Wook Kim,Cardiac perforation caused by bone cement embolism ,15 November 2011
    Monma H, Goto M and Kohmura T , Gypsum & Lime, 1984 No.188, 11-16
    Moore W.R, Graves S.E, Bain G.I. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
    M.P. Ginebra ⁎, T. Traykova, J.A. Planell. Calcium phosphate cements as bone drug delivery systems: A review, Journal of Controlled Release 113 (2006) 102–110
    Myerson A.S. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
    Nilsson M., Ferna´ndez E. Sarda S. Lidgren 1L., Planell J.A. "Characterization of a novel calcium phosphate/sulphate bone cement." J Biomed Mater Res 61: 600–607, 2002.
    Nilsson M., Wielanek L., J.S. Wang, K. E. Tanner, L. Lidgren. "Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement." Journal of Materials Science: Materials in Medicine 14: 399-404, 2003.
    Park JB. Biomaterials, An Introduction. Plenum Press. New York, 1979.
    Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
    Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
    Park JB, Lakes RS. Biomaterials: an introduction. Plenum Press, 2nd ed., New York, 1992.
    Peelen J, Rejda B, Vermeiden J, de Groot K. Sintered tricalcium phosphate as bioceramic. Science of ceramics 1977;9:226-236.
    R Sivakumar. On the relevance and requirements of biomaterials.
    Bull. Master. Sci., Vol. 22, No. 3, pp. 647-655
    Ray R, Degge J, Gloyd P, Mooney G. Bone regeneration. J Bone Joint Surg 1952;34A:638-647.
    Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. Academic Press, California, 1996;222-223.
    Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974;247:220-222.
    Russell Bert Farquhar, B.Sc., D.D.S..Direct bonding comparing a polyacrylic acid and a phosphoric acid technique, American Journal of Orthodontics and Dentofacial Orthopedics.Volume90.Issue3. September 1986, Pages 187–194
    Sergey V. Dorozhkin. Calcium Orthophosphates as Bioceramics: State of the Art. J. Funct. Biomater. 2010, 1, 22-107
    Sergey V. Dorozhkin. Calcium orthophosphate cements for biomedical application. J Mater Sci (2008) 43:3028–3057
    Sergey V. Dorozhkin. Calcium orthophosphates. J Mater Sci (2007) 42:1061–1095
    Silver FH. Biomaterials, medical devices, and tissue engineering: an integrated approach. Chapman & Hall, New York, 1994.
    Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993;64:1-58.
    Song H.Y, Esfakur Rahman A.H.M., Lee B.T. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid, J Mater Sci: Mater Med 20:935–941,2009.
    S. Ramakrishna , Z.-M. Huang .,Biocomposite,Comprehensive Structural Integrity volume 9,2007
    Takag i S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19 (1998) 1593Ð1599
    Vereecke G, Lemaitre J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO3-H2O. J Cryst Growth 1990;104:820-832.
    Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ Histologic changes after vertebroplasty. J Bone Joint Surg [Am] 86(A):1230-1238, 2004.
    WAN KHARTINI WAN KHODIR, ROSLINDA SHAMSUDIN, ABDUL RAZAK DAUD & YUSOF ABDULLAH. InjectableHydroxyapatite -β -Tricalcium Phosphate –Calcium Sulphate Biocement. Sains Malaysiana . 34(2)(2005): 77-80
    Ying. Nanocrystalline apatites and composite prostheses incorporating them, and method for their production ,US patent 6013591, 2000.
    The Orthopedis Industry Annual Report: 2009-2010
    The U.S. Market for Medical Technology Opportunities and Challenges for Swiss Companies.
    汪建民, 材料分析, 中國材料科學學會, 1998
    宋信文(教授) 陳松青(博士生), 生醫材料簡介
    林文彬, 成骨細胞與破骨細胞的研究探討, 林園中醫診所台北市立聯合醫院中興院區
    林志隆, 腦神經外科副教授,高醫醫訊月刊第二十七卷第 十期
    張炳龍, ROSS 組織學, 合記圖書出版社, 147-158, 1991
    梁智仁,“骨質疏鬆致骨折專治生物材料的研製與市場化.”京港學術交流第五十四期, 2002
    趙月秀 產業分析師 生技/醫藥速報半月刊 第 119 期

    下載圖示 校內:2023-10-11公開
    校外:2023-10-11公開
    QR CODE