簡易檢索 / 詳目顯示

研究生: 徐千又
Hsu, Chien-Yu
論文名稱: 校園教室PM2.5濃度預測模式之建立與驗證及不同介入措施對於學齡兒童早期健康影響之探討
Establishing and validating indoor PM2.5 concentration predicting models for campus classrooms and assessing the effects associated with the installation with different intervention measures on early health effects of school children
指導教授: 蔡朋枝
Tsai, Perng-Jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 87
中文關鍵詞: PM2.5校園教室介入防護措施暴露推估模式早期健康指標
外文關鍵詞: PM2.5, School classroom, Intervention measures, Exposure predicting model, Early health effects
相關次數: 點閱:84下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 學童長時間待在教室環境中,長期暴露於教室內PM2.5下將造成其健康危害,近年來發展出多種介入措施來改善室內PM2.5之濃度。然因PM2.5之累積性健康效應,故僅依靠傳統環境監測方式,依有限的樣本來評估介入措施採用後之學童長期暴露勢必有所不足。因此,建立一有效之室內PM2.5濃度預測模式以替代之,應有其實務應用上之價值。本研究目的為評估使用介入設備對教室中懸浮微粒移除之有效性以及使用介入設備時之舒適度、二氧化碳暴露及早期健康影響進行評估。建立一適用於推估使用防護介入措施時教室中長期PM2.5濃度預測模式,並利用實場量測數據進行驗證其有效性。此外,欲將台灣各地區長期PM2.5濃度結合前述之模式進行計算所需之各項介入措施清淨流率,以擬定校園懸浮微粒防護措施之選用策略。本研究係以完全混合盒模式為基礎,在考量PM2.5之重力沉降及介入措施之去除效率情形下,建立一適用於粒狀物之室內濃度暴露推估模式,再結合校園實場量測之室內外PM2.5濃度進行模式之驗證。所探討之介入措施包括新風系統、空氣清淨機及冷氣靜電濾網等三種。欲評估介入設備對學齡兒童早期健康指標之影響,本研究對學童進行生理檢測,主要關切學童肺功能、氧化性傷害及重金屬暴露。於三所校園實施為期兩週之採樣,第一週為無使用防護介入措施學童之暴露與生理指標對照組,第二週為使用不同防護介入措施同學之暴露與生理指標實驗組,於每週五放學前進行尿液樣本收集以及肺功能量測。三間教室分別使用新風系統、空氣清淨機及冷氣靜電濾網等介入措施時,其所獲得之I/O ratio分別為: 0.14、0.07及0.61,可知前二者相較於第三種介入措施有較佳之PM2.5暴露保護效果。有關PM2.5濃度推估模式驗證的部分,本研究觀察到新風系統推估值及實際值之間存在5分鐘之延遲效應,其延遲5分鐘後之室內PM2.5濃度實際值為推估值濃度之1.040倍。而使用空氣清淨機及冷氣靜電濾網介入措施則未發現延遲效應,實際值分別為推估值濃度之1.041及0.933倍。三種介入措施發展之推估模式均能有效推估教室中PM2.5濃度,其R2分別為0.964、0.822、及0.948。在關窗條件下使用三種介入措施,其室內不通風指數以新風系統最低,冷氣靜電濾網次之,空氣清淨機最高。新風系統因其引入鮮空氣之特性使其室內通風良好。後兩者之差異來自於兩間教室不同窗戶型態之差異,氣密性愈高其關窗下之通風量愈低,使得室內二氧化碳蓄積量較高。再介入措施使用後,學童之肺功能指標差異以新風系統效果最為顯著,VC、FVC和FEV1接顯著上升,平均上升0.24、0.2、0.18L,其餘兩種介入措施則無明顯改善。在介入措施使用後學童尿中之8-OHdG和重金屬濃度皆無改善,可能為介入時間過於短暫導致尿液分析結果無法看出其改善結果。

    The present study aims to evaluate the effectiveness of using intervention measures in removing PM2.5 in classrooms, as well as to assess the comfort, carbon dioxide exposure, and early health impacts when using these intervention measures. Furthermore, this study aims to establish a PM2.5 predicting model and combine the long-term exposure concentrations from various regions in Taiwan to develop a manual for selecting intervention measures in school campuses. The intervention measures including fresh air system, air purifiers, and the air cleaning filters were applied to three elementary schools, respectively. DustTrak and airbox were used to assess the indoor and outdoor PM2.5 concentrations. The results of this study showed that the used of different interventions can effectively reduce indoor PM2.5 under the closing window condition. The PM2.5 predicting model established in this study should be effective in estimating the indoor PM2.5 concentration in school classrooms. It can be concluded that relying solely on applying one week of intervention measures is insufficient to demonstrate its improvement in early health effects of school children.

    摘要 I Extend Abstract II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 前言 1 1-1 研究背景 1 1-2 研究方向與目的 2 第二章 文獻回顧 3 2-1 室內空氣品質 3 2-1-1 室內空氣污染物來源 3 2-1-2 懸浮微粒 3 2-2 PM2.5對於人體之健康危害 4 2-2-1 PM2.5對學童之健康危害 4 2-2-2 學童早期健康指標 4 2-2-2.1 肺功能指標 4 2-2-2.2 呼氣一氧化氮 5 2-2-2.3 氧化性傷害 5 2-2-2.4 重金屬濃度 5 2-3 改善室內PM濃度之防護介入措施 6 2-3-1 新風系統 6 2-3-2 空氣清淨機 6 2-3-3 冷氣靜電濾網 6 2-4 室內PM2.5量測方法 7 2-4-1 微粒分徑採樣器 7 2-4-2 直讀式儀器 7 2-5 室內PM濃度之暴露模式推估技術 8 2-5-1 完全混合盒模式 8 2-5-2 進場/遠場模式 9 2-6 二氧化碳蓄積及空氣不通風指數評估 12 第三章 研究方法與設備 13 3-1 研究架構 13 3-2 研究對象 15 3-3 室內PM2.5暴露濃度預測模式之建立 15 3-4 室內PM2.5濃度之實場採樣及預測模式驗證 15 3-4-1 採樣場域 15 3-4-2 使用之防護介入措施 16 3-4-2.1 新風系統 16 3-4-2.2 冷氣靜電濾網 16 3-4-2.3 空氣清淨機 16 3-4-3 採樣儀器 17 3-4-3.1 PM2.5質量濃度採樣 17 3-4-3.2 室內二氧化碳濃度採樣 17 3-5 二氧化碳蓄積及空氣不通風指數評估 17 3-6 學童早期健康指標 18 3-6-1 肺功能 18 3-6-2 呼氣一氧化氮 18 3-6-3 氧化性傷害和重金屬暴露濃度 19 3-7 暴露問卷及時間活動模式問卷調查 19 3-7-1 暴露調查問卷 19 3-7-2 舒適度問卷 19 第四章 結果與討論 20 4-1 教室內PM2.5暴露濃度推估模式之開發 20 4-1-1 使用空氣清淨機及冷氣靜電濾網 20 4-1-2 使用新風系統 21 4-1-3 教室內通風量之推估 22 4-2 不同介入措施教室PM2.5濃度之比較 25 4-3 PM2.5暴露濃度推估模式之驗證 30 4-4 學童暴露問卷調查結果 33 4-5 PM2.5暴露對學童早期健康指標之影響 41 4-5-1 肺功能 41 4-5-2 氧化性傷害 45 4-5-3 重金屬 49 4-6 使用介入措施前後之教室內空氣不通風指數評估 56 4-7 擬定校園懸浮微粒防護措施選用策略 57 4-7-1 介入措施選用流程 57 4-7-2 台灣各地區長期PM2.5濃度變異 58 4-7-3 室內新風量評估 59 4-7-4 介入措施CADR值計算 59 4-7-4.1 達目標濃度所需之CADR值(CADR15ug) 59 4-7-4.2 於目標時間達平衡濃度所需之CADR值(CADRt20) 61 第五章 研究限制 67 第六章 結論與建議 68 6-1 結論 68 6-2 建議 69 第七章 參考文獻 70 第八章 附錄 75

    Al osman M, Yang F, Massey IY. 2019. Exposure routes and health effects of heavy metals on children. BioMetals 32:563-573.
    Apte K, Salvi S. 2016. Household air pollution and its effects on health. F1000Research 5.
    Badran G, Ledoux F, Verdin A, Abbas I, Roumie M, Genevray P, et al. 2020. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 243:125440.
    Baharfar Y, Mohammadyan M, Moattar F, Nassiri P, Behzadi MH. 2022. Indoor pm2. 5 concentrations of pre-schools; determining the effective factors and model for prediction. Smart and Sustainable Built Environment 11:1042-1059.
    Batterman S. 2017. Review and extension of co2-based methods to determine ventilation rates with application to school classrooms. International Journal of Environmental Research and Public Health 14:145.
    Bekierski D, Kostyrko KB. 2021. The influence of outdoor particulate matter pm2.5 on indoor air quality: The implementation of a new assessment method. Energies 14:6230.
    Bravo MA, Ebisu K, Dominici F, Wang Y, Peng RD, Bell ML. 2017. Airborne fine particles and risk of hospital admissions for understudied populations: Effects by urbanicity and short-term cumulative exposures in 708 u.S. Counties. Environmental Health Perspectives 125:594-601.
    Britigan N, Alshawa A, Nizkorodov SA. 2006. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. Journal of the Air & Waste Management Association 56:601-610.
    Chang HH, Pan A, Lary DJ, Waller LA, Zhang L, Brackin BT, et al. 2019. Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in jackson, ms. Environmental Monitoring and Assessment 191:280.
    Chen C, Zhao B. 2011. Review of relationship between indoor and outdoor particles: I/o ratio, infiltration factor and penetration factor. Atmospheric environment 45:275-288.
    Chen X-C, Cao J-J, Ward TJ, Tian L-W, Ning Z, Gali NK, et al. 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (pm2.5) in hong kong. Science of The Total Environment 742:140501.
    Chuang H-C, Ho K-F, Lin L-Y, Chang T-Y, Hong G-B, Ma C-M, et al. 2017. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study. Environment International 106:91-96.
    Cincinelli A, Martellini T. 2017. Indoor air quality and health. International Journal of Environmental Research and Public Health 14:1286.
    Diapouli E, Chaloulakou A, Spyrellis N. 2007. Indoor and outdoor particulate matter concentrations at schools in the athens area. Indoor and Built Environment 16:55-61.
    Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. 2011. An official ats clinical practice guideline: Interpretation of exhaled nitric oxide levels (feno) for clinical applications. American Journal of Respiratory and Critical Care Medicine 184:602-615.
    Friedlingstein P, O'sullivan M, Jones MW, Andrew RM, Gregor L, Hauck J, et al. 2022. Global carbon budget 2022. Earth System Science Data Discussions 2022:1-159.
    Gehring U, Gruzieva O, Agius RM, Beelen R, Custovic A, Cyrys J, et al. 2013. Air pollution exposure and lung function in children: The escape project. Environmental Health Perspectives 121:1357-1364.
    Graille M, Wild P, Sauvain J-J, Hemmendinger M, Guseva Canu I, Hopf NB. 2020. Urinary 8-ohdg as a biomarker for oxidative stress: A systematic literature review and meta-analysis. International journal of molecular sciences 21:3743.
    Guerra SA, Olsen SR, Anderson JJ. 2014. Evaluation of the so2 and nox offset ratio method to account for secondary pm2. 5 formation. Journal of the Air & Waste Management Association 64:265-271.
    Gundacker C, Forsthuber M, Szigeti T, Kakucs R, Mustieles V, Fernandez MF, et al. 2021. Lead (pb) and neurodevelopment: A review on exposure and biomarkers of effect (bdnf, hdl) and susceptibility. International Journal of Hygiene and Environmental Health 238:113855.
    Guo M, Zhou M, Wei S, Peng J, Wang Q, Wang L, et al. 2021. Particle removal effectiveness of portable air purifiers in aged-care centers and the impact on the health of older people. Energy and Buildings 250:111250.
    He L, Norris C, Cui X, Li Z, Barkjohn KK, Brehmer C, et al. 2021. Personal exposure to pm2.5 oxidative potential in association with pulmonary pathophysiologic outcomes in children with asthma. Environmental Science & Technology 55:3101-3111.
    Hennig F, Fuks K, Moebus S, Weinmayr G, Memmesheimer M, Jakobs H, et al. 2014. Association between source-specific particulate matter air pollution and hs-crp: Local traffic and industrial emissions. Environmental health perspectives 122:703-710.
    Heydari G, Taghizdeh F, Fazlzadeh M, Jafari AJ, Asadgol Z, Mehrizi EA, et al. 2019. Levels and health risk assessments of particulate matters (pm 2.5 and pm 10) in indoor/outdoor air of waterpipe cafés in tehran, iran. Environmental Science and Pollution Research 26:7205-7215.
    Ho E, Karimi Galougahi K, Liu C-C, Bhindi R, Figtree GA. 2013. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biology 1:483-491.
    Jacobson LdSV, de Souza Hacon S, de Castro HA, Ignotti E, Artaxo P, de Leon ACMP. 2012. Association between fine particulate matter and the peak expiratory flow of schoolchildren in the brazilian subequatorial amazon: A panel study. Environmental research 117:27-35.
    Kabirikopaei A, Lau J. 2020. Uncertainty analysis of various co2-based tracer-gas methods for estimating seasonal ventilation rates in classrooms with different mechanical systems. Building and Environment 179:107003.
    Kajbafzadeh M, Brauer M, Karlen B, Carlsten C, van Eeden S, Allen RW. 2015. The impacts of traffic-related and woodsmoke particulate matter on measures of cardiovascular health: A hepa filter intervention study. Occupational and Environmental Medicine 72:394-400.
    Kamaruddin AS, Jalaludin J, Hamedon TR, Hisamuddin NH. 2019. Feno as a biomarker for airway infammation due to exposure to air pollutants among school children nearby industrial areas in terengganu. Pertanika Journal of Science & Technology 27.
    Kim JY, Mukherjee S, Ngo LC, Christiani DC. 2004. Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. Environmental health perspectives 112:666-671.
    Koehler KA, Peters TM. 2015. New methods for personal exposure monitoring for airborne particles. Current Environmental Health Reports 2:399-411.
    Landrigan PJ, Miodovnik A. 2011. Children's health and the environment: An overview. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine 78:1-10.
    Lee GH, Kim JH, Kim S, Lee S, Lim DH. 2020. Effects of indoor air purifiers on children with asthma. Yonsei medical journal 61:310.
    Li H, Cai J, Chen R, Zhao Z, Ying Z, Wang L, et al. 2017. Particulate matter exposure and stress hormone levels. Circulation 136:618-627.
    Li W, Wilker EH, Dorans KS, Rice MB, Schwartz J, Coull BA, et al. 2016. Short‐term exposure to air pollution and biomarkers of oxidative stress: The framingham heart study. Journal of the American Heart Association 5:e002742.
    Liu Q, Gu X, Deng F, Mu L, Baccarelli AA, Guo X, et al. 2019. Ambient particulate air pollution and circulating c-reactive protein level: A systematic review and meta-analysis. International Journal of Hygiene and Environmental Health 222:756-764.
    Loft S, Vistisen K, Ewertz M, Tjønneland A, Overvad K, Poulsen HE. 1992. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: Influence of smoking, gender and body mass index. Carcinogenesis 13:2241-2247.
    Michelot N, Mandin C, Ramalho O, Riberon J, Marchand C, Malherbe L, et al. 2011. Campagne pilote de surveillance de la qualité de l'air dans les écoles et crèches en france: Résultats de la première phase. Pollution Atmosphérique: climat, santé, société:267-279.
    Mobasser S, Wager Y, Dittrich TM. 2022. Indoor air purification of volatile organic compounds (vocs) using activated carbon, zeolite, and organosilica sorbents. Industrial & Engineering Chemistry Research 61:6791-6801.
    Noordin NH, Abd Razak A, Kwong QJ. 2021. Effects of ventilation modes on the concentrations of particulate matter (pm2. 5) and indoor temperature inside vehicle cabin during mobile conditions. Malaysian Journal of Sustainable Environment (MySE) 8:33-48.
    Pope CA, Ezzati M, Dockery DW. 2009. Fine-particulate air pollution and life expectancy in the united states. New England Journal of Medicine 360:376-386.
    Porta D, Narduzzi S, Badaloni C, Bucci S, Cesaroni G, Colelli V, et al. 2016. Air pollution and cognitive development at age 7 in a prospective italian birth cohort. Epidemiology 27:228-236.
    Quezada-Maldonado EM, Sánchez-Pérez Y, Chirino YI, García-Cuellar CM. 2021. Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways. Environmental Pollution 287:117313.
    Ribéron J, Derbez M, Lethrosne M, Kirchner S. Impact of airing behaviour on air stuffiness in schools and daycares centres: Development of a specific tool for ventilation management. In: Proceedings of the 12 th International conference on indoor air quality and climate, Indoor Air, 2011, 5-10.
    Sharma S, Chandra M, Kota SH. 2020. Health effects associated with pm2.5: A systematic review. Current Pollution Reports 6:345-367.
    Shen M, Zhang C, Yi X, Guo J, Xu S, Huang Z, et al. 2021. Association of multi-metals exposure with intelligence quotient score of children: A prospective cohort study. Environment International 155:106692.
    Shi Y, Li X. 2018. Purifier or fresh air unit? A study on indoor particulate matter purification strategies for buildings with split air-conditioners. Building and Environment 131:1-11.
    Sloss LL, Smith IM. 2000. Pm10 and pm2.5: An international perspective. Fuel Processing Technology 65-66:127-141.
    Ten Berge WF. 2000. Mathematical models for estimating occupational exposure to chemicals:AIHA.
    Thomas A, Gebhart J. 1994. Correlations between gravimetry and light scattering photometry for atmospheric aerosols. Atmospheric Environment 28:935-938.
    Tran VV, Park D, Lee Y-C. 2020. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. International Journal of Environmental Research and Public Health 17:2927.
    Vattanasit U, Navasumrit P, Khadka MB, Kanitwithayanun J, Promvijit J, Autrup H, et al. 2014. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. International Journal of Hygiene and Environmental Health 217:23-33.
    Wallace LA, Wheeler AJ, Kearney J, Van Ryswyk K, You H, Kulka RH, et al. 2011. Validation of continuous particle monitors for personal, indoor, and outdoor exposures. Journal of Exposure Science & Environmental Epidemiology 21:49-64.
    Wan M-P, Wu C-L, To G-NS, Chan T-C, Chao CY. 2011. Ultrafine particles, and pm2. 5 generated from cooking in homes. Atmospheric Environment 45:6141-6148.
    Xing Y-F, Xu Y-H, Shi M-H, Lian Y-X. 2016. The impact of pm2. 5 on the human respiratory system. Journal of thoracic disease 8:E69.
    Yanosky JD, Williams PL, MacIntosh DL. 2002. A comparison of two direct-reading aerosol monitors with the federal reference method for pm2. 5 in indoor air. Atmospheric Environment 36:107-113.
    Zhang Y, Guo Z, Zhang W, Li Q, Zhao Y, Wang Z, et al. 2023. Effect of acute pm2.5 exposure on lung function in children: A systematic review and meta-analysis. Journal of Asthma and Allergy 16:529-540.
    Zhang Z, Chang L-y, Lau AK, Chan T-C, Chieh Chuang Y, Chan J, et al. 2017. Satellite-based estimates of long-term exposure to fine particulate matter are associated with c-reactive protein in 30 034 taiwanese adults. International Journal of Epidemiology 46:1126-1136.
    Zhu Y, Smith TJ, Davis ME, Levy JI, Herrick R, Jiang H. 2011. Comparing gravimetric and real-time sampling of pm2. 5 concentrations inside truck cabins. Journal of occupational and environmental hygiene 8:662-672.
    王銘甫, 呂克桓, 張璧伊, 許銘麟, 王尊彥, 翁瑞宏. 2013. 氣喘與非氣喘兒童其尿液 8-hydroxy-2'-deoxyguanosine 濃度之差異. 童綜合醫學雜誌 7:10-17.
    陽曉燕, 李立, 孔建, 張明, 王君, 王秦, et al. 2020. 大氣 pm_ (2.5) 急性暴露對健康兒童 3 項炎症和氧化應激指標的影響. 衛生研究.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE