| 研究生: |
吳思宏 Wu, Ssu-Hung |
|---|---|
| 論文名稱: |
應用於電漿負載之新型混合諧振換流器研製 Design and Implementation of Novel Hybrid Resonant Inverter for Plasma Load Applications |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 半橋式換流器 、混合諧振 |
| 外文關鍵詞: | Half Bridge, Hybrid Resonant |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於電漿技術之工業應用漸具成效,開發常壓式電漿源已漸具有其工業應用價值,因此本論文提出一套可供常壓式電漿負載電源供應器使用之換流器系統,此系統係以半橋式換流器為基礎,並加入混合式諧振電路進行濾波,且經由適當設計,輔以開關柔性切換技術,不僅可增加系統效能,且可降低散熱體積,此外,文中進行換流器系統之輸出電壓與輸入電壓之線性關係推論,並於模擬與實作測試中進行輸入電壓變動及負載變動測試,經由模擬與實測之波形,應可輔以說明本文所擬製之混合諧振式換流電路,應已兼備研製參考與實用生產價值。
Following the success of plasma technology in industry applications, the development of power supply for plasma loads has become more important nowadays. Therefore, this thesis is devoted to the inverter design of power supply for plasma loads. Based on the half-bridge inverter, the proposed circuit design has included the hybrid resonant inverter as well as soft-switching techniques such that the operation performance of the system can be significantly improved, while the volume of heat dissipation can be also largely decreased. Moreover, the thesis has investigated the relationships between input and output voltage, where software simulations and experimental measurement were both performed to validate. It was confirmed that test results gained from simulations and experiments would support the academic reference and practical value of the proposed hybrid resonant inverter circuits for the application considered.
[1] J. W. Coburn, “Surface Processing With Partially Ionized Plasmas,” IEEE Transactions on Plasma Science, Vol. 19, No. 6, December 1991, pp. 1048-1062.
[2] B. Kim, S. Kim, and M. T. Lim, “Wavelet-Based Uniformity of Plasma Etching Surface,” IEEE Transactions on Plasma Science, Vol. 19, No. 6, December 1991, pp. 1048-1062.
[3] A. Mizuno, R. Shimizu, A. Chakrabarti, L. Dascalescu, and S.Furuta, “NOx Removal Process Using Pulsed Discharge Plasma,” IEEE Transactions on Industry Applications, Vol. 31, No.5, September-October 1995, pp.957-962.
[4] Y. S. Mok and In-S. Nam, “Positive Pulsed Corona Discharge Process for Simultaneous Removal of SO2 and NOx from Iron-ore Sintering Flue gas,” IEEE Transactions on Plasma Science, Vol. 27, No.4, August 1999, pp.1188-1196.
[5] T. Oda, T. Takahashi, and R. Yamashita, “Non Thermal Plasma Processing for VOCs Decomposition and NOx Removal in Flue Gas, ”Journal of Advanced Oxidation Technology, Vol. 2, No. 2, 1997, pp. 337-345
[6] B. Eliasson and U. Kogelschatz, “Nonequilibrium Volume Plasma Chemical Processing, ” IEEE Transactions on Plasma Science, Vol. 19, No. 6, December 1991, pp.1063-1077.
[7] M. I. Boulos, “Thermal Plasma Processing ” IEEE Transactions on Plasma Science, Vol. 19, No. 6, December 1991, pp.1078-1089.
[8] 賴耿陽 編譯,“電漿工學的基礎”,復文書局,民國75年。
[9] B. Chapman, “Glow Discharge Processes”, A Wiley-Interscience Publication, Canada, 1980.
[10]
A. Schutze, J. Y. Jeong, S. E. Babayan, P. Jaeyoung, G. S. Selwyn, and R. F. Hicks, “The Atmospheric-pressure Plasma Jet: a Review and Comparison to Other Plasma Sources,” IEEE Transactions on Plasma Science, Vol. 26, No. 6, December 1998, pp.1685-1694.
[11] O. P. Solonenko, Thermal Plasma Torches and Technologies-Volume I: Plasma Torches: Basic Studies and Design, Cambridge International Science Publishing, London, 2004
[12] S. Rauf, “Dual Radio Frequency Sources in a Magnetized Capacitively Coupled Plasma Discharge” IEEE Transactions on Plasma Science, Vol. 31, No. 4, April 2000, pp.471-478.
[13] S. P. Kuo, M. Rubinraut, S. Popovic, and D. Bivolaru, “Characteristic Study of a Portable Arc Microwave Plasma Torch” IEEE Transactions on Plasma Science, Vol. 34, No. 6, December 2006, pp.2537-2544.
[14] J. S. Chang, P. A. Lawless, and T. Yamamoto, “Corona Discharge Processes ” IEEE Transactions on Plasma Science, Vol. 19, No. 6, December 1991, pp.1152-1166.
[15] Z. Falkenstein, “Applications of Dielectric Barrier Discharges,” 12th International Conference on High-Energy Particle Beams, June 1998, pp.117-120.
[16] J. R. Roth, Industrial Plasme Engineering-Volume 1: Principles, Institute of Physics Publishing, London, 1995.
[17] E. E. Kunhardt and L. H. Luessen, Electrical Breakdown and Discharges in Gases-Part A: Fundamental Processes and Breakdown, NATO Advanced Science Institutes Series, New York and London, 1981.
[18] R. L. Boxman, P. J. Martin, and D.M. Sanders, Handbook of Vacuum Arc Science and Technology-Fundamentals and Applications, Noyes Publications, New Jersey, USA, 1995.
[19]
江炫樟 編譯,電力電子學,全華科技圖書股份有限公司,民國91年。
[20] 梁適安,交換式電源供給器之理論與實務設計,全華科技圖書股份有限公司,民國90年。
[21] H. Kifune, Y. Hatanaka, and M. Nakaoka , “Quasi-Series Resonant-Type Soft-Switching Phase Shift Modulated Inverter,” IEE Proceedings – Electric Power Applications, Vol. 150, No. 6, November 2003, pp. 725-732.
[22] Elegant Power Application Research Center,電力電子學綜論,全華科技圖書股份有限公司,民國96年。
[23] M. C. Cosby and R. M. Nelms, “A Resonant Inverter for Electronic Ballast Applications,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 4, August 1994, pp. 418-425.
[24] W. J. B. Heffernan, P. D. Evans, M. Thompson, and P. Robert, “Three Phase Parallel Loaded Resonant Converter with Fixed Frequency Operation,” 1991 Fourth International Conference on Power Electronics and Variable-Speed Drives, London, England, 17-19 July 1990, pp.115 - 120.
[25] J. M. Alonso, C. Blanco, E. Lopes, A. J. Calleja, and M. Rico, “Analysis, Design, and Optimization of the LCC Resonant Inverter as a High-Intensity Discharge Lamp Ballast,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, May 1998, pp. 573-585.
[26] R. Casanueva, F. J. Azcondo, and C. Branas, “Output Current Sensitivity Analysis of the LCpCs Resonant Inverter: Current-Source Design Criteria,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, June 2007, pp. 1560-1568.
[27] M. Qiu and P. K. Jain, “System Performance of a High Frequency AC Power Distribution System,” 24th Annual International Telecommunications Energy Conference, 29 Sept.-3 Oct. 2002, pp. 491 - 496
[28]
M. Qiu, P. K. Jain, and H. Zhang, “A Half-Bridge Hybrid Resonant Inverter with Novel Pulse Phase Modulation Control,” IEEE Transactions on Power Electronics, Vol. 19, No. 1, January 2004, pp. 121-129.
[29] Z.Ye, P. K. Jain, and S. Paresh, “A High Efficiency High Frequency Resonant Inverter for High Frequency AC Power Distribution Architectures,” 37th IEEE Power Electronics Specialists Conference, Jeju, China, 18-22 June 2006, pp. 1 - 7
[30] P. K. Jain and M. C. Tanju, “A 20 KHz Hybrid Resonant Power Source for the Space Station,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 4, July 1989, pp. 491-496.
[31] M. Qiu, P. K. Jain, and H. Zhang, “Dynamic Performance of an APWM Resonant Inverter for High Frequency AC Power Distribution System,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 1, February 2002, pp. 256-263.
[32] M. Qiu, P. K. Jain, and H. Zhang, “Dynamic Performance of an APWM Resonant Inverter for High Frequency AC Power Distribution System,” IEEE Transactions on Power Electronics, Vol. 21, No. 6, November 2006, pp. 1556-1563.
[33] Z. Ye, P. K. Jain, and P. C. Sen,, “A Two-Stage Resonant Inverter With Control of the Phase Angle and Magnitude of the Output Voltage,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 5, October 2007, pp. 2797-281
[34] Low Power Monostable/Astable Multivibrator CD4047BC Data Sheet, FAIRCHILD Semiconductor Corporation, March 2002.
[35] Low Power Quad Differential Comparators LM339 Data Sheet, STMicroelectronic Corporation, March 2003.
[36] Photo-Coupler TLP-250 Data Sheet, TOSHIBA Corporation, June 2004.
[37]
Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT60M303 Data Sheet, TOSHIBA Corporation, August 1997
[38] TC4013BP/TC4013BF/TC4013BFN Dual D-Type Flip-Flop Data Sheet, TOSHIBA Corporation, December 1997.
[39] JFET-Input Operational Amplifiers TL084 Data Sheet, Texas Instruments Inc., November 1992.
[40] 鄭培璿,IsSpice在電力電子與電源轉換器上的應用,全華科技圖書股份有限公司,民國88年。
校內:2058-06-24公開