簡易檢索 / 詳目顯示

研究生: 鍾秉翰
Chung, Ping-Han
論文名稱: 仿小翼羽渦流產生器對定翼及旋翼的效應探討
The Effect of an Alula-liked Vortex Generator on Fixed and Revolving Wings
指導教授: 葉思沂
Yeh, Szu-I
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 99
中文關鍵詞: 渦流產生器小翼羽壓力螢光感測塗料PIV量測
外文關鍵詞: Vortex generator, Fixed wing, Revolving wing, Pressure-sensitive paint, PIV
相關次數: 點閱:108下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去研究指出鳥類有特殊構造-小翼羽 (alula),可以在飛行時防止流體分離及延遲失速,其功能類似於渦流產生器 (vortex generator)。為了解渦流產生器在鳥類滑翔及拍撲兩種運動下的空氣動力效應,本研究以定翼 (滑翔) 及旋翼 (拍撲) 作為實驗模型,探討渦流產生器在不同攻角下 (α = 10°、25°、45°) 之效應,翅膀以展弦比(AR=b/c) = 4的薄型平板做為模型,渦流產生器的尺寸則參考小翼羽的概念,貼齊在翼前緣處。在定翼模型上使用壓力感測塗料和粒子影像測速儀進行表面壓力量測及流場量測,放置三個不同渦流產生器高度,了解不同渦流產生器高度 (h*= h/c) 在三個攻角下,翼上表面的壓力分佈及升力係數變化,接著透過觀測流場並驗證。旋翼模型使用粒子影像測速儀進行流場量測,改變渦流產生器離翼根的距離,了解不同渦流產生器位置 (Lw* = Lw/b) 在三個攻角下的流場變化,計算環流量及分析升力趨勢的變化。從定翼實驗結果得知,渦流產生器會提供流向及展向之動能防止流體分離產生,並增加低壓區的面積及升力,其效能與渦流產生器高度相關,在h*=11%時,在各個攻角下均有最佳提高升力之效果,若其高度過高時,會產生額外阻力。從旋翼實驗可知拍撲動作本身的展向效應與渦流產生器所產生之流向及展向動能之耦合情形,當渦流產生器安裝在靠近翼根處時(Lw* = 0.25),因近翼根處之旋轉效應相比於靠翼尖處時較弱,渦流產生器提供之流向及展向動能可以給予額外環流量以提高升力。在Lw* = 0.5,因靠近翼尖處時之渦流強度已達近飽和狀態,故渦流產生器提供之額外流向及展向動能在 α = 45° 時,對於環流量並無明顯提升。透過本研究之成果可以更了解小翼羽結構於鳥在飛行過程中所提供的空氣動力特性,此實驗成果將可供未來微飛行器機翼設計與性能提升之參考。

    The alula is a small structure of feather that can prevent birds from stalling and flow separation. The function of alula is similar to a vortex generator. This study uses pressure-sensitive paint (PSP) and particle image velocimetry (PIV) to determine the effect of an alula-like vortex generator under two flight conditions, gliding (fixed wing) and flapping (revolving wing), at three angles of attacks (α = 10°、25°、45°). For a thin-flat wing of AR = 4, PSP determines the surface pressure pattern on the suction surface and PIV characterizes the incoherent vortices in flow field. An alula-like vortex generator is positioned at the leading edge of the wing. The effectiveness of a vortex generator depends on the height (h*), the position (Lw*) and the angle of attack of a wing. The PSP results show that the low-pressure region is extended due to a vortical structure induced by a vortex generator, especially when h*=11%. In revolving wing, the interaction between revolving motion and the presence of a vortex generator is determined using PIV. Additional spanwise and chordwise momentums which are induced by a vortex generator energize the circulation of leading-edge vortex (LEV) and result in bursting of vortex in outer spanwise region. The effectiveness of a vortex generator is more significant when it is positioned near the wing root (Lw* = 0.25) than that the near the wing tip (Lw* = 0.5). These findings advance the understanding of wing-alula interactions in bird’s flying motions and are useful for a conceptual aerodynamic design of MAV.

    摘要 i Abstract ii 誌謝 x 目錄 xi 圖目錄 xv 表目錄 xix 符號索引 xx 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 文獻回顧 4 1.3.1 翼前緣渦流 5 1.3.2 渦流產生器與小翼羽 6 1.3.3 旋翼運動(revolving motion) 10 1.3.4 壓力螢光感測塗料與粒子圖像測速應用 15 第2章 實驗原理 18 2.1 壓力螢光感測塗料 18 2.1.1 光致發光 18 2.1.2 螢光淬滅 19 2.1.3 壓力螢光感測塗料原理 19 2.1.4 壓力螢光感測塗料之溫度特性 21 2.2 粒子影像測速儀 23 2.2.1 交相關運算(Cross-correlation) 23 2.2.2示蹤粒子 24 2.2.3判讀視窗 25 2.2.4 多重網格迭代法 26 第3章 實驗模型與方法 27 3.1 實驗模型與參數設定 27 3.1.1 模型尺寸與因次分析 27 3.1.2 機構設計及製造 31 3.1.3 制動方式 33 3.1.4 實驗參數設定 35 3.2 多孔性高分子壓力螢光感測塗料 38 3.2.1 壓力螢光感測塗料選擇(ISSI) 38 3.2.2 底漆選擇(ISSI) 39 3.2.3 壓力敏感塗料噴塗流程 40 3.3塗料靜態量測及校正方法 41 3.3.1 光源穩定性量測 43 3.3.2 壓力轉換器校正 44 3.3.3 儀器架設及靜態特徵量測 45 3.3.4 靜態特徵量測結果分析 47 3.4粒子影像測速儀系統 51 3.4.1 高速攝影機 51 3.4.2 雷射及光學鏡組 52 3.4.3 粒子選擇 53 3.4.4 拍攝鏡頭 53 3.4.5 粒子影像測速儀流程 54 3.5實驗環境 55 3.5.1 低速風洞 55 3.5.2 水箱 56 3.6壓力螢光感測塗料分析 57 3.6.1 影像對準 57 3.6.2 中值濾波 57 3.6.3 NACA0012測試 58 3.7粒子影像測速儀分析 60 3.7.1 PIV lab 60 3.7.2 渦流辨識 61 3.7.3 環流量分析 61 第4章 結果與討論 63 4.1定翼模型(滑翔) 63 4.1.1 表面壓力分佈 63 4.1.2 壓力係數與正向升力係數 66 4.1.3 粒子影像測速儀 71 4.2旋翼模型(拍撲) 73 4.2.1 無渦流產生器(基線) 74 4.2.2 渦流產生器在Lw* = 0.25 80 4.2.3 渦流產生器在Lw* = 0.5 86 第5章 結論與未來展望 93 5.1 結論 93 5.2 未來展望 95 參考文獻 96

    [1] S. S. Bhat, J. Zhao, J. Sheridan, K. Hourigan, and M. C. Thompson, "Uncoupling the effects of aspect ratio, Reynolds number and Rossby number on a rotating insect-wing planform," Journal of Fluid Mechanics, vol. 859, pp. 921-948, 2018.
    [2] D. Lentink and M. H. Dickinson, "Rotational accelerations stabilize leading edge vortices on revolving fly wings," Journal of Experimental Biology, vol. 212, issue 16, pp. 2705-19, 2009.
    [3] S. I. Lee, J. Kim, H. Park, P. G. Jablonski, and H. Choi, "The function of the alula in avian flight," Scientic Reports, vol. 5, 9914, 2015.
    [4] A. Seshagiri, E. Cooper, and L. W. Traub, "Effects of vortex generators on an airfoil at low Reynolds numbers," Journal of Aircraft, vol. 46, no. 1, pp. 116-122, 2009.
    [5] S. P. Sane, "The aerodynamics of insect flight," Journal of Experimental Biology, vol. 206, issue 23, pp. 4191-208, 2003.
    [6] M. H. Dickinson, "Wing rotation and the aerodynamic basis of insect flight," Science, vol. 284, no. 5422, pp. 1954-1960, 1999.
    [7] S. P. Sane and M. H. Dickinson, "The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight," Journal of Experimental Biology, vol. 205, issue 8, pp. 1087-1096, 2002.
    [8] T. Jardin and T. Colonius, "On the lift-optimal aspect ratio of a revolving wing at low Reynolds number," Journal of Royal Society of Interface, vol. 15, no. 143, pp. 2705-2719, 2018.
    [9] C. J. Wojcik and J. H. J. Buchholz, "Vorticity transport in the leading-edge vortex on a rotating blade," Journal of Fluid Mechanics, vol. 743, pp. 249-261, 2014.
    [10] M. Gad-el-Hak and D. M. Bushnell, "Separation control: Review," Journal of Fluids Engineering, vol. 113, no. 1, pp. 5-30, 1991.
    [11] J. C. Lin, "Review of research on low-profile vortex generators to control boundary-layer separation," Progress in Aerospace Sciences, vol. 38, no. 4-5, pp. 389-420, 2002.
    [12] T. Linehan and K. Mohseni, "Investigation of a sliding alula for control augmentation of lifting surfaces at high angles of attack," Aerospace Science and Technology, vol. 87, pp. 73-88, 2019.
    [13] T. Linehan and K. Mohseni, "On the maintenance of an attached leading-edge vortex via model bird alula," Journal of Fluid Mechanics, vol. 897, A17, 2020.
    [14] T. Linehan and K. Mohseni, "Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing," Scientic Reports, vol. 10, no. 1, 7905, 2020.
    [15] J. W. Kruyt, G. F. van Heijst, D. L. Altshuler, and D. Lentink, "Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio," Journal of Royal Society of Interface, vol. 12, 20120051, 2015.
    [16] D. Tudball Smith, D. Rockwell, J. Sheridan, and M. Thompson, "Effect of radius of gyration on a wing rotating at low Reynolds number: A computational study," Physical Review Fluids, vol. 2, 064701, 2017.
    [17] Y. Lee, K.-B. Lua, and T. Lim, "Aspect ratio effects on revolving wings with Rossby number consideration," Bioinspiration & biomimetics, vol. 11, no. 5, 056013, 2016.
    [18] R. R. Harbig, J. Sheridan, and M. C. Thompson, "Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms," Journal of Fluid Mechanics, vol. 717, pp. 166-192, 2013.
    [19] R. Konrath, C. Klein, A. Schröder, and J. Kompenhans, "Combined application of pressure sensitive paint and particle image velocimetry to the flow above a delta wing," Experiments in Fluids, vol. 44, no. 3, pp. 357-366, 2007.
    [20] A. Tagliabue, S. Scharnowski, and C. J. Kähler, "Surface pressure determination: a comparison between PIV-based methods and PSP measurements," Journal of Visualization, vol. 20, no. 3, pp. 581-590, 2016.
    [21] J. Heine and K. Müller-Buschbaum, "Engineering metal-based luminescence in coordination polymers and metal–organic frameworks," Chemical Society Reviews, vol. 42, no. 24, 9232, 2013.
    [22] 林筠芳, "開發與應用多孔性高分子壓力螢光感測塗料於穿音速AGARD-B流場量測," 動力機械工程學系碩士論文, 國立清華大學, 2020.
    [23] D. Dabiri, "Cross-Correlation Digital Particle Image Velocimetry@ A Review," Department of Aeronautics & Astronautics, University of Washinton, 2007.
    [24] A. Melling, "Tracer particles and seeding for particle image velocimetry," Measurement Science and Technology, vol. 8, no. 12, pp. 1406-1416, 1997.
    [25] M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans, Particle image velocimetry: a practical guide. Springer, 2018.
    [26] R. D. Keane and R. J. Adrian, "Theory of cross-correlation analysis of PIV images," Applied Scientific Research, vol. 49, no. 3, pp. 191-215, 1992.
    [27] J. Westerweel, "Fundamentals of digital particle image velocimetry," Measurement Science and Technology, vol. 8, no. 12, pp. 1379-1392, 1997.
    [28] S. Wang and S. Ghaemi, "Effect of vane sweep angle on vortex generator wake," Experiments in Fluids, vol. 60, no. 1, 24, 2019.
    [29] J. W. Kruyt, E. M. Quicazan-Rubio, G. F. van Heijst, D. L. Altshuler, and D. Lentink, "Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors," Journal of Royal Society of Interface, vol. 11, no. 99, 20140585, 2014.
    [30] J. Eldredge, C. Wang, and M. Ol, "A computational study of a canonical pitch-up, pitch-down wing maneuver," 39th AIAA Fluid Dynamics Conference, AIAA 2009-3687, 2009.
    [31] https://innssi.com/wp-content/uploads/Pressure_Sensitive_Paint/UniFIB/Documentation/UniFIB-PSP-UF-XXX-Data-Sheet.pdf.
    [32] https://innssi.com/wp-content/uploads/Pressure_Sensitive_Paint/Epoxy_Screen_Layer/Documentation/Epoxy-Screen-Layer-SCR-XXX-Datasheet.pdf.
    [33] F. Manar, A. Medina, and A. R. Jones, "Tip vortex structure and aerodynamic loading on rotating wings in confined spaces," Experiments in Fluids, vol. 55, no. 9, 1815, 2014.
    [34] NASA Langley Research Cneter, Turbulent Modeling Resource, 2D NACA 0012 airfoil validation Case, https://turbmodels.larc.nasa.gov
    [35] W. Thielicke and E. J. Stamhuis, "PIVlab – Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB," Journal of Open Research Software, vol. 2, p. e230, 2014.
    [36] G. Haller, "An objective definition of a vortex," Journal of Fluid Mechanics, vol. 525, pp. 1-26, 2005.
    [37] A. R. Jones, A. Medina, H. Spooner, and K. Mulleners, "Characterizing a burst leading-edge vortex on a rotating flat plate wing," Experiments in Fluids, vol. 57, no. 4, 52, 2016.
    [38] A. Pr, F. Jl, and H. Kc, "Research at DERA on sub boundary layer vortex generators (SBVGs) ," 39th Aerospace Sciences Meeting and Exhibit, AIAA 2001-0887, 2001.
    [39] J. Winslow, H. Otsuka, B. Govindarajan, and I. Chopra, "Basic understanding of airfoil characteristics at low Reynolds numbers (104–105)," Journal of Aircraft, vol. 55, no. 3, pp. 1050-1061, 2018.
    [40] M. Breuer and N. Jovičić, "Separated flow around a flat plate at high incidence: an LES investigation," Journal of Turbulence, vol. 2, p. N18, 2001.
    [41] N. Lambourne and D. Bryer, "The bursting of leading-edge vortices-some observations and discussion of the phenomenon," Aeronautical Research Council Report and Memoranda 3282, 1961.

    下載圖示 校內:2024-09-02公開
    校外:2024-09-02公開
    QR CODE