簡易檢索 / 詳目顯示

研究生: 劉弘毅
Liu, Hung-Yi
論文名稱: 交流端之連續電流模式充電幫浦功因修正的電子式安定器
AC-side CCM Charge-Pump Power-Factor Correction Electronic Ballasts
指導教授: 陳建富
Chen, Jiann-Fuh
林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 79
中文關鍵詞: 充電幫浦功率因數修正
外文關鍵詞: charge-pump, power-factor correction
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文提出了一交流端之連續電流模式充電幫浦功因修正的電子式安定器電路,包含電壓源、電流源和電壓電流源型式的充電幫浦功因修正電子式安定器。

      傳統直流端之不連續電流模式電子式安定器的缺點為:(1)電磁雜訊干擾較大,(2)開關及二極體元件需選用成本更高之零件,(3)不適合大功率應用。 然而傳統直流端之連續電流模式功因修正的電子式安定器可以解決傳統直流端之不連續電流模式電子式安定器的缺點,但仍需要較多的元件,及較高的成本。

      本文所提出ㄧ交流端之連續電流模式充電幫浦功因修正的電子式安定器具有以下之優點:(1)輸入電流低諧波失真因數和高功因,(2)連續的輸入電流具較小di/dt以減少電磁雜訊干擾,且可使用較小的輸入濾波器,(3)輸入電流峰值較低可降低開關切換與二極體導通時之電流應力,且電感元件體積較小,(4)可降低開關截止時之高頻切換損失,(5)適合大功率應用,(6)可以使用較少的元件。

      最後實際製作32W的交流端之連續電流模式充電幫浦功因修正的電子式安定器電路,將以實測結果波形來驗證電路的預期性能。

     This thesis presents three varieties of AC-side continuous-conduction-mode (CCM) charge-pump (CP) power-factor-correction (PFC) electronic ballasts -- voltage-source (VS), current-source (CS), and voltage-source current-source (VSCS) types.

     The drawbacks of conventional DC-side discontinuous-conduction -mode (DCM) electronic ballasts include high di/dt, high current stress, and high switching losses. As a result, conventional DC-side DCM electronic ballasts have low efficiency, due to the DCM operation, and the ballasts require a large input EMI filter. However, the conventional DC-side CCM electronic ballasts are able to solve these problems, but still require a higher component count. To efficiently reduce the cost of electronic components for DC-side CCM electronic ballasts, AC-side CCM electronic ballasts for fluorescent lamps need to be developed.

     The AC-side CCM-CP-PFC electronic ballasts work in CCM, which consequently reduces di/dt, the size of the EMI filter, and switching and conduction losses.

     Finally, 32W-rated power electronic ballast prototype circuits are designed and implemented. Experimental results verify that the input current harmonics meet the IEC 61000-3-2 Class-C Standard, and the CP capacitor can help the PFC inductor current to achieve CCM and high PF.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 DC-side Two-stage DCM PFC Electronic Ballast 4 1.3 DC-side DCM PFC Electronic Ballast 6 1.4 Outline of the thesis 9 Chapter 2 Proposed AC-side CCM Charge-Pump Power-Factor-Correction (AC-side CCM CP-PFC) Electronic Ballasts 10 2.1 Introduction 10 2.2 Derivation of the AC-side CCM VS-CP-PFC Electronic Ballasts 12 2.3 Derivation of the AC-side CCM CS-CP-PFC Electronic Ballasts 17 2.4 Derivation of the AC-side CCM VSCS-CP-PFC Electronic Ballasts 24 2.5 Summary 29 Chapter 3 Analysis Guidelines 30 3.1 Introduction 30 3.2 Resonant Tank 30 3.3 EMI Filter 33 3.4 CP Capacitor and PFC inductor 36 3.5 Summary 46 Chapter 4 Design and Implementation 47 4.1 Introduction 47 4.2 Design and Implementation of the Prototype Circuits 48 4.3 Experimental Results 57 4.4 Summary 66 Chapter 5 Conclusions and Future Work 67 References 69 APPENDIX Simulations of CCM CP-PFC Electronic Ballasts 71

    [1] Jinrong Qian, “Advanced Single-Stage Power Factor Correction Techniques,” Ph.D. Dissertation, Virginia Tech, Sept. 1997.
    [2] Jindong Zhang, “Advanced Integrated Single-Stage Power Factor Correction Techniques,” Ph.D. Dissertation, Virginia Tech, Mar. 2001.
    [3] Electromagnetic Compatibility (EMC) – Part 3: Limits – Section 2: Limits for harmonic current emissions (equipment input current < 16 A per phase),IEC 6100-3-2 Document, 1998.
    [4] H. Endo, T. Yamashita and T. Sugiura, “A high power factor buck converter,” Proceedings of IEEE Power Electronics Specialists Conference,1992, pp. 1071-1076.
    [5] M.C. Ghanem, K. Al-Haddad and G. Roy, “A New Single Phase Buck-boost Converter with Unity Power Factor,” Proceedings of IEEE Industry Applications Society Annual Meeting, 1993 , pp. 785-792.
    [6] S. Teramoto, M. Sekine, R. Saito, “High power factor AC/DC converter,”U.S. Patent No. 5,301,095, Apr. 5, 1994.
    [7] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous mode boost converter,”
    Proceeding of IEEE Power Electronics Specialists Conference, 1989, pp. 825-829.
    [8] C. Blanco, M. Alonso, E. Lopez, A.Calleja and M. Rico, “A single-stagefiuorescent lamp ballast with high power factor,” Proceedings of IEEE APEC 1996, pp. 616-621.
    [9] Fengfeng Tao, “Advanced High-Frequency Electronic Ballasting Techniques for Gas Discharge Lamps,” Ph.D. Dissertation, Virginia Tech, Dec. 2001.
    [10] R. Redl, L. Balogh, “Design consideration for single stage isolated power factor corrected power supplies with fast regulation of the output voltage,”Proceedings of IEEE Applied Power Electronics Conference,1995,pp.454-458.
    [11] J. Youm, “A single-stage electronic ballast with high power factor,” IEEE Trans. lnd. Electron , vol. 47, pp. 716-718, June 2000.
    [12] Tokushi Yamauchi, “Charge Pump Power Factor Correction Circuit for Power Supply for Gas Discharge Lamp ,” U.S. Patent No. 5,959,410, Sep. 28, 1999.
    [13] Jinrong Qian, “Gas Discharge Lamp Inverter with a Wide Input Voltage Range,” U.S. Patent No. 5,949,199, Sep. 7, 1999
    [14] F.Tao “A Comparative Study of a Family of Charge Pump Power Factor Correction Electronic Ballasts ” Proceedings of VPEC Seminar 1998 ,pp. 255-264.
    [15] V. Vlatkovic, D. Borojevic, and F. C. Lee , “Input filter design for power factor correction circuit,” IEEE Trans. on Power Electronics, vol. 11, Jan. 1996, pp. 199-205.

    下載圖示 校內:立即公開
    校外:2005-09-05公開
    QR CODE