簡易檢索 / 詳目顯示

研究生: 洪芷欣
Hung, Tzu-Hsin
論文名稱: 比較登革病毒或茲卡病毒對於神經幹細胞發炎反應之影響
Comparision of inflammatory responses in neuron stem cells infected with dengue virus or zika virus
指導教授: 彭貴春
Perng, Guey-Chuen
陳舜華
Chen, Shun-Hua
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 58
中文關鍵詞: 茲卡病毒登革病毒TNF-αNF-κBInfliximab
外文關鍵詞: Zika virus, dengue virus, TNF-α, NF-κB, Infliximab
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 茲卡病毒 (Zika virus) 和登革病毒 (dengue virus) 都是屬於由病媒蚊傳播的黃熱病毒。文獻指出此兩種黃熱病毒都能感染神經細胞並且都會導致患者神經系統相關的症狀。由於茲卡病毒和登革病毒在基因組成、傳播方式,以及所造成的臨床症狀上相似,所以在患者出現神經系統相關症狀初期時,在做病毒鑑別診斷時需要特別留意。值得注意的是,只有茲卡病毒感染孕婦會導致胎兒小頭畸形,因此可以得知茲卡病毒和登革病毒感染神經細胞的群體與病理機制具有差異,且茲卡病毒對於神經的傷害更為顯著,其中相關的病理機制包括神經細胞分化異常以及細胞發炎反應。神經幹細胞被認為是具有增殖,分化和釋放一些訊號因子等潛在功能來維持神經組織穩定的細胞之一。我們實驗室先前研究發現,帶有CD133+標誌的幹細胞容易受到登革病毒的感染。然而,我們對於茲卡病毒和登革病毒感染神經幹細胞的影響仍不清楚。為了研究茲卡病毒和登革病毒感染對於CD133+神經幹細胞病理機制上的差異,我們在此研究中,選用了一種都能被茲卡病毒和登革病毒感染,並且富含了CD133的神經母細胞瘤細胞株,SK-N-SH細胞。首先,從SK-N-SH 細胞中分選出純度高的CD133+細胞並分別讓其感染茲卡病毒或登革病毒。接著利用RNA 測序分析感染細胞中的基因轉錄譜,發現茲卡病毒感染在 CD133+細胞中誘導出比登革病毒及對照組別更多的差異基因表現,以及透過 TNF-α訊息傳遞路徑的發炎反應是茲卡病毒感染CD133+細胞上調基因中參與最多的訊息傳遞路經。為了進一步驗證茲卡病毒感染CD133+ 細胞後能誘導出強烈的TNF-α訊息傳遞路徑,我們定量了TNF-α訊息傳遞路徑中上游基因的表達,結果顯示,在茲卡病毒感染的細胞中TNF,TRAF2,RIPK1,CIAP1 和 IKBKB基因的表現量上升。並且發現茲卡病毒感染不是利用細胞JNK 磷酸化,而是活化細胞NF-kB 入核來誘導發炎基因的轉錄。此外,茲卡病毒感染細胞會分泌出較高的TNF-α和IL-6細胞激素,並且隨著給予病毒量的增加而細胞產生的細胞激素表現量也跟著增加。接著,我們給予被茲卡病毒感染的CD133+細胞TNF-α中和性抗體,Infliximab,發現會抑制茲卡病毒感染誘導的細胞NF-κB活化入核的表現,並降低細胞釋放出的TNF-α和IL-6表現量。總結出,和登革病毒感染相比,TNF-α 相關的發炎反應可能是茲卡病毒感染影響CD133+神經幹細胞的主要潛在路徑。

    Zika virus (ZIKV) and dengue virus (DENV), which share similar genetic sequences and transmission cycles, can cause neurological disorders. During early infection, attention should be paid to the differential diagnosis of neurological symptoms caused by ZIKV or DENV. The neuropathological effect of ZIKV is more significant in the aspects of not only inflammatory harm but also differentiation abnormality, indicating the different pathogenesis of ZIKV and DENV in neural cells. Findings of our laboratory have demonstrated that CD133+ stem cells are highly permissive to DENV. To study the pathological differences between two viruses in CD133+ cells, the neuroblastoma cell line, SK-N-SH with abundant CD133+ cells was utilized as the model in this study. CD133+ cells were sorted from SK-N-SH cells and infected with ZIKV or DENV before RNA sequencing to investigate the gene expression profiles, which showed that ZIKV altered more gene expression in CD133+ cells than DENV and that the inflammatory response through the TNF-α signaling pathway is significantly enhanced by ZIKV. Moreover, the expression of TNF-α signaling-related genes such as TNF, TRAF2, RIPK1, CIAP1, and IKBKB genes was upregulated in ZIKV-infected cells, and ZIKV infection activated the downstream pathway of NF-kB to induce the transcription of inflammatory genes. Additionally, ZIKV infection induced high levels of TNF-α and IL-6. Furthermore, treatment of TNF-α neutralizing antibody, Infliximab, inhibited NF-κB activation and reduced TNF-α and IL-6 expression in ZIKV-infected CD133+ cells. In summary, TNF-α signaling pathway may be the potential signaling pathway influenced by ZIKV infection in neural stem cells.

    中文摘要I 英文延伸摘要III 致謝VI 目錄VII 圖目錄IX 縮寫X 緒論1 1. 茲卡病毒流行病學1 2. 茲卡病毒臨床症狀及致病機轉2 3. 茲卡病毒的神經趨向性3 4. 登革病毒流行病學4 5. 登革病毒臨床症狀及致病機轉4 6. 登革病毒與CD133+幹細胞5 7. 感染茲卡病毒或登革病毒引發的發炎反應對於疾病嚴重程度的關聯6 8. 本篇主旨7 實驗材料與方法9 A. Materials 9 1. Cell lines and virus 9 2. Antibodies 9 3. Kits 10 4. Media and Reagents 11 5. Ingredients in buffer and medium 12 6. Primers 13 B. Methods 14 1. Cell culture (SK-N-SH, BHK21, and Vero cells) 14 2. DENV expansion 14 3. ZIKV expansion 15 4. DENV infection 16 5. ZIKV infection 16 6. Plaque assay (DENV and ZIKV) 17 7. Magnetic beads isolation 18 8. Purity of sorted CD133+ stem cells 18 9. Multicolor FACS analysis 19 10. RNA sequencing 20 11. RNA isolation and qRT-PCR 20 12. Western blotting 21 13. Cytokines detection by enzyme-linked immunosorbent assay (ELISA)22 14. Nuclear and cytoplasmic extraction 22 15. The cytotoxicity of Infliximab 23 16. TNF-α inhibition 23 17. Statistical analysis 24 實驗結果25 1. SK-N-SH細胞都能被登革病毒或茲卡病毒感染。25 2. CD133+ SK-N-SH細胞在登革病毒及茲卡病毒感染後的第二天和第三天,細胞內病毒量最具有顯著差異。25 3. 茲卡病毒感染CD133+ SK-N-SH細胞中,會顯著改變基因表達並促使細胞發炎,而其中最主要的發炎機制與TNF-α訊息傳遞路徑有關。26 4. 茲卡病毒感染不會導致細胞JNK磷酸化,而是誘導較多p65 NF-κB入核使得CD133+ SK-N-SH細胞發生發炎反應。27 5. 茲卡病毒感染會造成CD133+ SK-N-SH 細胞分泌較多TNF-α和 IL-6 細胞激素,並且隨著病毒量的增加而細胞產生的細胞激素表現量也跟著增加。29 6. Infliximab能夠抑制茲卡病毒感染導致的p65 NF-κB入核,降低CD133+ SK- N-SH 細胞發炎反應。30 7. 給予Infliximab不會影響受茲卡病毒感染的CD133+ 神經幹細胞分泌出的病毒量。31 討論33 結論38 參考文獻39 附錄45

    1. Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-507.
    2. Pielnaa, P., et al., Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology, 2020. 543: p. 34-42.
    3. Kularatne, S.A., Dengue fever. Bmj, 2015. 351: p. h4661.
    4. Barbi, L., et al., Prevalence of Guillain-Barré syndrome among Zika virus infected cases: a systematic review and meta-analysis. Braz J Infect Dis, 2018. 22(2): p. 137-141.
    5. Rawal, G., S. Yadav, and R. Kumar, Zika virus: An overview. J Family Med Prim Care, 2016. 5(3): p. 523-527.
    6. Beltrán-Silva, S.L., et al., Clinical and differential diagnosis: dengue, chikungunya and Zika. Rev. Medica del Hosp. Gen. de Mex, 2018. 81(3): p. 146-153.
    7. Vieira, M., et al., Potential role of dengue virus, chikungunya virus and Zika virus in neurological diseases. Mem Inst Oswaldo Cruz, 2018. 113(11): p. e170538.
    8. Bayless, N.L., et al., Zika virus infection induces cranial neural crest cells to produce cytokines at levels detrimental for neurogenesis. Cell Host Microbe, 2016. 20(4): p. 423-428.
    9. Li, H., et al., Dengue virus and Japanese encephalitis virus infection of the central nervous system share similar profiles of cytokine accumulation in cerebrospinal fluid. Cent Eur J Immunol, 2017. 42(2): p. 218-222.
    10. Lum, F.M., et al., Zika virus infects human fetal brain microglia and induces inflammation. Clin Infect Dis, 2017. 64(7): p. 914-920.
    11. Rombi, F., et al., The journey of Zika to the developing brain. Mol Biol Rep, 2020. 47(4): p. 3097-3115.
    12. Hsu, A.Y., et al., Identification and characterization of permissive cells to dengue virus infection in human hematopoietic stem and progenitor cells. Transfusion, 2019. 59(9): p. 2938-2951.
    13. Vats, A., et al., Evidence that hematopoietic stem cells in human umbilical cord blood is infectable by dengue virus: proposing a vertical transmission candidate. Heliyon, 2021. 7(4): p. e06785.
    14. Dick, G.W., S.F. Kitchen, and A.J. Haddow, Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg, 1952. 46(5): p. 509-20.
    15. Haddow, A.D., et al., Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis, 2012. 6(2): p. e1477.
    16. Teixeira, M.G., et al., The epidemic of Zika virus-related microcephaly in Brazil: Detection, Control, Etiology, and Future Scenarios. Am J Public Health, 2016. 106(4): p. 601-5.
    17. Cao-Lormeau, V.M., et al., Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet, 2016. 387(10027): p. 1531-1539.
    18. Carod-Artal, F.J., Neurological complications of Zika virus infection. Expert Rev Anti Infect Ther, 2018. 16(5): p. 399-410.
    19. Calvez, E., et al., First probable case of congenital Zika syndrome in Lao People's Democratic Republic. Int J Infect Dis, 2021. 105: p. 595-597.
    20. McCloskey, B. and T. Endericks, The rise of Zika infection and microcephaly: what can we learn from a public health emergency? Public Health, 2017. 150: p. 87-92.
    21. Pierson, T.C. and M.S. Diamond, The emergence of Zika virus and its new clinical syndromes. Nature, 2018. 560(7720): p. 573-581.
    22. Soni, N.R., A new looming of Zika virus. Asian Pac. J. Reprod, 2016. 5(3): p. 179-181.
    23. Shankar, A., A.A. Patil, and S. Skariyachan, Recent perspectives on genome, transmission, clinical manifestation, diagnosis, therapeutic Strategies, vaccine developments, and challenges of Zika virus research. Front Microbiol, 2017. 8: p. 1761.
    24. Tang, H., et al., Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell, 2016. 18(5): p. 587-90.
    25. Wen, Z., H. Song, and G.L. Ming, How does Zika virus cause microcephaly? Genes Dev, 2017. 31(9): p. 849-861.
    26. Barzon, L., et al., Zika virus: from pathogenesis to disease control. FEMS Microbiol Lett, 2016. 363(18).
    27. Estévez-Herrera, J., et al., Zika virus pathogenesis: A battle for immune evasion. Vaccines (Basel), 2021. 9(3).
    28. Del Carpio-Orantes, L., [Zika, a neurotropic virus?]. Rev Med Inst Mex Seguro Soc, 2016. 54(4): p. 540-3.
    29. Platt, D.J., et al., Zika virus-related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Sci Transl Med, 2018. 10(426).
    30. Brault, J.B., et al., Comparative analysis between flaviviruses reveals specific neural stem cell tropism for Zika virus in the mouse developing neocortex. EBioMedicine, 2016. 10: p. 71-6.
    31. Beattie, R. and S. Hippenmeyer, Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett, 2017. 591(24): p. 3993-4008.
    32. Jordan, P.M., et al., Generation of spinal motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast growth factor. J Neurosci Res, 2009. 87(2): p. 318-32.
    33. Nelson, B.R., et al., Immune evasion strategies used by Zika virus to infect the fetal eye and brain. Viral Immunol, 2020. 33(1): p. 22-37.
    34. Ferraris, P., et al., Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway. Emerg Microbes Infect, 2019. 8(1): p. 1003-1016.
    35. Zhang, W., et al., In utero infection of Zika virus leads to abnormal central nervous system development in mice. Sci Rep, 2019. 9(1): p. 7298.
    36. Lanko, K., et al., Replication of the Zika virus in different iPSC-derived neuronal cells and implications to assess efficacy of antivirals. Antiviral Res, 2017. 145: p. 82-86.
    37. Miner, J.J., et al., Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell, 2016. 165(5): p. 1081-1091.
    38. Carabali, M., et al., Why are people with dengue dying? A scoping review of determinants for dengue mortality. BMC Infect Dis, 2015. 15: p. 301.
    39. Roy, S.K. and S. Bhattacharjee, Dengue virus: epidemiology, biology, and disease aetiology. Can J Microbiol, 2021. 67(10): p. 687-702.
    40. Chen, W.-J., Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis. Biomed. J 2018. 41(5): p. 283-289.
    41. Jing, Q. and M. Wang, Dengue epidemiology. Glob Health J, 2019. 3(2): p. 37-45.
    42. Lee, S.A., et al., The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. PLoS Negl Trop Dis, 2021. 15(12): p. e0009773.
    43. Perera, R. and R.J. Kuhn, Structural proteomics of dengue virus. Curr Opin Microbiol, 2008. 11(4): p. 369-77.
    44. Pan, C.-Y., et al., Epidemiological analysis of the Kaohsiung city strategy for dengue fever quarantine and epidemic prevention. BMC Infect. Dis, 2020. 20(1): p. 347.
    45. Diaz-Quijano, F.A., Dengue. N Engl J Med, 2012. 367(2): p. 180; author reply 181.
    46. Balm, M.N., et al., A diagnostic polymerase chain reaction assay for Zika virus. J Med Virol, 2012. 84(9): p. 1501-5.
    47. Alexander, N., et al., Multicentre prospective study on dengue classification in four South-east Asian and three Latin American countries. Trop Med Int Health, 2011. 16(8): p. 936-48.
    48. Chan, C.Y. and E.E. Ooi, Dengue: an update on treatment options. Future Microbiol, 2015. 10(12): p. 2017-31.
    49. Izmirly, A.M., et al., Challenges in dengue vaccines development: Pre-existing infections and cross-reactivity. Front Immunol, 2020. 11: p. 1055.
    50. Srikiatkhachorn, A., A. Mathew, and A.L. Rothman, Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol, 2017. 39(5): p. 563-574.
    51. Li, H., et al., Dengue virus and Japanese encephalitis virus infection of the central nervous system share similar profiles of cytokine accumulation in cerebrospinal fluid. Cent Eur J Immunol, 2017. 42(2): p. 218-222.
    52. Calderón-Peláez, M.A., et al., Dengue virus infection of blood-brain barrier cells: consequences of severe disease. Front Microbiol, 2019. 10: p. 1435.
    53. La Russa, V.F. and B.L. Innis, Mechanisms of dengue virus-induced bone marrow suppression. Baillieres Clin Haematol, 1995. 8(1): p. 249-70.
    54. Vogt, M.B., et al., Dengue viruses infect human megakaryocytes, with probable clinical consequences. PLoS Negl Trop Dis, 2019. 13(11): p. e0007837.
    55. Miraglia, S., et al., A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood, 1997. 90(12): p. 5013-21.
    56. Holmberg Olausson, K., et al., Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. PLoS One, 2014. 9(9): p. e106694.
    57. Brown, D.V., et al., Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. PLoS One, 2017. 12(2): p. e0172791.
    58. Lathia, J.D., et al., Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis, 2011. 2(9): p. e200.
    59. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003. 63(18): p. 5821-8.
    60. Desole, G., et al., Modelling neurotropic Flavivirus infection in human induced pluripotent stem cell-derived systems. Int J Mol Sci, 2019. 20(21).
    61. Puccioni-Sohler, M. and C. Rosadas, Advances and new insights in the neuropathogenesis of dengue infection. Arq Neuropsiquiatr, 2015. 73(8): p. 698-703.
    62. Bozza, F.A., et al., Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis, 2008. 8: p. 86.
    63. Cruz Hernández, S.I., et al., Primary dengue virus infections induce differential cytokine production in Mexican patients. Mem Inst Oswaldo Cruz, 2016. 111(3): p. 161-7.
    64. Vinhaes, C.L., et al., Newborns with Zika virus-associated microcephaly exhibit marked systemic inflammatory imbalance. J Infect Dis, 2020. 222(4): p. 670-680.
    65. Devhare, P., et al., Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells. Cell Death Dis, 2017. 8(10): p. e3106-e3106.
    66. Bonenfant, G., et al., Asian Zika virus isolate significantly changes the transcriptional profile and alternative RNA splicing events in a neuroblastoma cell line. Viruses, 2020. 12(5).
    67. Idriss, H.T. and J.H. Naismith, TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech, 2000. 50(3): p. 184-95.
    68. Kalliolias, G.D. and L.B. Ivashkiv, TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Microsc Res Tech, 2000. 50(3): p. 184-95.
    69. Kalliolias, G.D. and L.B. Ivashkiv, TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol, 2016. 12(1): p. 49-62.
    70. Zhao, H., et al., Role of necroptosis in the pathogenesis of solid organ injury. Cell Death Dis, 2015. 6(11): p. e1975.
    71. Shi, J.-H. and S.-C. Sun, Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways. Front. Immunol, 2018. 9.
    72. Shih, R.-H., C.-Y. Wang, and C.-M. Yang, NF-kappaB signaling pathways in neurological inflammation: A Mini Review. Front. Mol. Neurosci, 2015. 8.
    73. Rombi, F., et al., The journey of Zika to the developing brain. Mol Biol Rep, 2020. 47(4): p. 3097-3115.
    74. Lima, M.C., et al., The transcriptional and protein profile from human infected neuroprogenitor cells is strongly correlated to Zika virus microcephaly cytokines phenotype evidencing a persistent inflammation in the CNS. Front Immunol, 2019. 10: p. 1928.
    75. Karampetsou, M.P., S.N. Liossis, and P.P. Sfikakis, TNF-α antagonists beyond approved indications: stories of success and prospects for the future. Qjm, 2010. 103(12): p. 917-28.
    76. Ebert, E.C., Infliximab and the TNF-alpha system. Am J Physiol Gastrointest Liver Physiol, 2009. 296(3): p. G612-20.
    77. Chuang, F.K., et al., Anti-inflammatory compound shows therapeutic safety and efficacy against flavivirus infection. Antimicrob Agents Chemother, 2019. 64(1).
    78. Hiscott, J., H. Kwon, and P. Génin, Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest, 2001. 107(2): p. 143-51.
    79. Rahman, M.M. and G. McFadden, Modulation of NF-κB signalling by microbial pathogens. Nat Rev Microbiol, 2011. 9(4): p. 291-306.
    80. Antoniou, E., et al., Z Zika virus and the risk of developing microcephaly in infants: A Systematic Review. Int J Environ Res Public Health, 2020. 17(11).
    81. Jhan, M.K., et al., Anti-TNF-α restricts dengue virus-induced neuropathy. J Leukoc Biol, 2018. 104(5): p. 961-968.
    82. Liu, T., et al., NF-κB signaling in inflammation. Signal Transduct Target Ther, 2017. 2: p. 17023-.
    83. Schröder, M. and R.J. Kaufman, ER stress and the unfolded protein response. Mutat Res, 2005. 569(1-2): p. 29-63.
    84. Xu, C., B. Bailly-Maitre, and J.C. Reed, Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest, 2005. 115(10): p. 2656-64.
    85. Szegezdi, E., et al., Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006. 7(9): p. 880-5.
    86. Lee, Y.R., et al., Dengue virus-induced ER stress is required for autophagy activation, viral replication, and pathogenesis both in vitro and in vivo. Sci Rep, 2018. 8(1): p. 489.
    87. Aggarwal, B.B., Tumor necrosis factors (TNF): A double-edged sword. J. clin. ligand assay, 2000. 23: p. 181-192.
    88. Wood, H., Targeting TNF to alleviate Zika virus complications. Nat Rev Neurol, 2018. 14(8): p. 450-451.
    89. Mutnal, M.B., et al., Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain. PLoS One, 2011. 6(1): p. e16211.
    90. Bobinger, T., et al. CD133-positive membrane particles in cerebrospinal fluid of patients with inflammatory and degenerative neurological diseases. Front Cell Neurosci, 2017. 11: p. 77.
    91. Liang, Q., et al., Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell, 2016. 19(5): p. 663-671.

    無法下載圖示 校內:立即公開
    校外:2027-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE