簡易檢索 / 詳目顯示

研究生: 黃境昱
Huang, Jing-Yu
論文名稱: 具可靠度的近臨界電壓記憶體式物理不可複製函數
A Reliable Near-threshold Voltage SRAM-based Physical Unclonable Function
指導教授: 邱瀝毅
Chiou, Lih-Yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 33
中文關鍵詞: 安全性物理不可複製函數製程變異
外文關鍵詞: Security, Physical unclonable function, Process variation
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近年來科技不斷進步,安全性議題也越來越受到重視。在現今最熱門的物連網應用中,各種裝置間彼此資料傳輸都需要作加密保護,而相較於傳統的加密系統,物理不可複製函數利用製造過程中產生的隨機變異,實現出類似晶片指紋的概念,不僅具有高安全性和防偽造性,也不像舊有的機制需要大量儲存,提供了輕量化的選擇。本論文以40奈米設計,並提出具有可靠度的近臨界電壓記憶體式物理不可複製函數,搭配不穩定位元的檢測和替換機制,可以達到98.85%的可靠度和49.6%的獨特性,而操作在近臨界電壓也大幅降低能量消耗,在相關文獻的比較裡都有能突出的地方。

    With the continuous advancement of technology, security issues become more and more important. In the applications of the popular Internet of Things (IoT) each device need to be protected with encryption when data transmission. Comparing with the traditional encryption system, a physical unclonable function (PUF), which utilizes the random variation on chip producing from the manufacturing process, realizes the concept like fingerprint. It not only has high security but also provides a lightweight choice different from old mechanism which requiring huge amount of storing. In this thesis, a reliable near-threshold voltage SRAM-based physical unclonable function is presented. The proposed design achieves the 98.85% reliability and 49.6% uniqueness. Operating at near-threshold voltage also makes the energy consumption lower. Our design shows a good performance when compared to the related works.

    摘要 i 致謝 v 目錄 vi 表目錄 viii 圖目錄 ix 第 1 章 緒論 1 1.1 研究概觀 1 1.1.1 發展背景 1 1.1.2 物理不可複製函數 2 1.1.3 相關名詞介紹 2 1.1.4 物理不可複製函數的類型 5 1.2 研究動機 8 1.3 論文貢獻 10 1.4 論文架構 10 第 2 章 相關研究文獻 11 2.1 利用老化現象提升可靠度及均勻度之靜態隨機存取記憶體式物理不可複製函數 11 2.2 透過預燒與多數決機制改善可靠度之複合式物理不可複製函數 13 2.3 兩段式取值之記憶體式物理不可複製函數 16 2.4 相關文獻總結 17 第 3 章 具可靠度的近臨界電壓記憶體式物理不可複製函數 19 3.1 設計簡述 19 3.2 物理不可複製函數架構 19 3.3 物理不可複製函數單元 20 3.4 不穩定位元檢測電路 22 3.5 不穩定位元替換電路 22 第 4 章 實驗結果與分析 23 4.1 電路操作模擬 23 4.1.1 物理不可複製函數操作時序 23 4.1.2 物理不可複製單元模擬 24 4.2 物理不可複製函數之參數模擬 26 4.2.1 可靠度 Reliability 26 4.3 晶片佈局 28 第 5 章 結論與未來研究方向 29 5.1 結論 29 5.2 未來工作 30 參考文獻 31

    [1] K.Yang, D.Blaauw, and D.Sylvester, “Hardware Designs for Security in Ultra-Low-Power IoT Systems: An Overview and Survey,” IEEE Micro, vol. 37, no. 6, pp. 72–89, Nov. 2017.
    [2] A. Maiti, V. Gunreddy, and P. Schaumont, “A Systematic Model to Evaluate and Compare the Performance of Physical Unclonable Functions,” in Embedded Systems Design with FPGAs, pp. 245-267, P. Athanas, D. Pnevmatikatos, and N. Sklavos, Eds., Springer, 2013.
    [3] M. Roel, ‘‘Physically unclonable functions: Constructions, properties and applications,’’ Ph.D. dissertation, Katholieke Univ. Leuven, Leuven, Belgium, 2012.
    [4] I. A. B. Adames, J. Das and S. Bhanja, "Survey of emerging technology based physical unclonable funtions," in Proc. 2016 International Great Lakes Symposium on VLSI (GLSVLSI), Boston, MA, 2016, pp. 317-322.
    [5] M. Majzoobi, G. Ghiaasi, F. Koushanfar and S. R. Nassif, "Ultra-low power current-based PUF," in Proc. IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, 2011, pp. 2071-2074.
    [6] N. Kimizuka et al., "NBTI enhancement by nitrogen incorporation into ultrathin gate oxide for 0.10-/spl mu/m gate CMOS generation," in Proc. 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104), Honolulu, HI, USA, 2000, pp. 92-93.
    [7] K. Yang et al., "9.2 A 0.6nJ −0.22/+0.19°C inaccuracy temperature sensor using exponential subthreshold oscillation dependence," in Proc. 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 160-161.
    [8] K. Yang, Q. Dong, D. Blaauw and D. Sylvester, "14.2 A physically unclonable function with BER <10−8 for robust chip authentication using oscillator collapse in 40nm CMOS," in Proc. 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
    [9] V. P. Yanambaka, S. P. Mohanty and E. Kougianos, "Making Use of Manufacturing Process Variations: A Dopingless Transistor Based-PUF for Hardware-Assisted Security," IEEE Transactions on Semiconductor Manufacturing, vol. 31, no. 2, pp. 285-294, May 2018.
    [10] T. Xu, H. Gu and M. Potkonjak, "An ultra-low energy PUF matching security platform using programmable delay lines," in Proc. 2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Tallinn, 2016, pp. 1-8.
    [11] X. Xi, H. Zhuang, N. Sun and M. Orshansky, "Strong subthreshold current array PUF with 265challenge-response pairs resilient to machine learning attacks in 130nm CMOS," in Proc. 2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C268-C269.
    [12] M. Wu et al., "A PUF scheme using competing oxide rupture with bit error rate approaching zero," in Proc. 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 130-132.
    [13] Z. Wang et al., "Current Mirror Array: A Novel Circuit Topology for Combining Physical Unclonable Function and Machine Learning," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1314-1326, April 2018.
    [14] M. Uddin et al., "Techniques for Improved Reliability in Memristive Crossbar PUF Circuits," in Proc. 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, PA, 2016, pp. 212-217.
    [15] H. Thapliyal and S. D. Kumar, "Energy-recovery based hardware security primitives for low-power embedded devices," in Proc. 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, 2018, pp. 1-6.
    [16] V. Sehwag and T. Saha, "TV-PUF: A Fast Lightweight Analog Physical Unclonable Function," in Proc. 2016 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), Gwalior, 2016, pp. 182-186.
    [17] S. Satpathy et al., "A 4-fJ/b Delay-Hardened Physically Unclonable Function Circuit With Selective Bit Destabilization in 14-nm Trigate CMOS," IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 940-949, April 2017.
    [18] S. K.Mathew, S. K.Satpathy, M. A.Anders, H.Kaul, S. K.Hsu, A.Agarwal, G. K.Chen, R. J.Parker, R. K.Krishnamurthy, and V.De, “16.2 A 0.19pJ/b PVT-variation-tolerant hybrid physically unclonable function circuit for 100% stable secure key generation in 22nm CMOS,” in Proc. IEEE International Solid-State Circuits Conference (ISSCC), 2014, pp. 278–279.
    [19] X. Lu, L. Hong and K. Sengupta, "15.9 An integrated optical physically unclonable function using process-sensitive sub-wavelength photonic crystals in 65nm CMOS," in Proc. 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 272-273.
    [20] R. Liu, P. Chen, X. Peng and S. Yu, "X-Point PUF: Exploiting Sneak Paths for a Strong Physical Unclonable Function Design," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3459-3468, Oct. 2018.
    [21] J. Li, T. Yang, M. Yang, P. R. Kinget and M. Seok, "An Area-Efficient Microprocessor-Based SoC With an Instruction-Cache Transformable to an Ambient Temperature Sensor and a Physically Unclonable Function," IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 728-737, March 2018.
    [22] J. Li and M. Seok, "Ultra-Compact and Robust Physically Unclonable Function Based on Voltage-Compensated Proportional-to-Absolute-Temperature Voltage Generators," IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2192-2202, Sept. 2016.
    [23] J. Li and M. Seok, "A 3.07μm2/bitcell physically unclonable function with 3.5% and 1% bit-instability across 0 to 80°C and 0.6 to 1.2V in a 65nm CMOS," in Proc. 2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, 2015, pp. C250-C251.
    [24] J. Lee, D. Lee, Y. Lee and Y. Lee, "A 445F2 leakage-based physically unclonable Function with Lossless Stabilization Through Remapping for IoT Security," in Proc. 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 132-134.
    [25] N. H. N. S. Kiran and R. Bhakthavatchalu, "Implementing delay based physically unclonable functions on FPGA," in Proc. 2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), Ramanathapuram, 2016, pp. 137-140.
    [26] S. Jeloka, K. Yang, M. Orshansky, D. Sylvester and D. Blaauw, "A sequence dependent challenge-response PUF using 28nm SRAM 6T bit cell," in Proc. 2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C270-C271.
    [27] Y. Cao, C. Chang, W. Zheng and X. Zhao, "A Sub-pico Joules Per Bit Robust Physical Unclonable Function Based on Subthreshold Voltage References," in Proc. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1-5.
    [28] A. B. Alvarez, W. Zhao and M. Alioto, "Static Physically Unclonable Functions for Secure Chip Identification With 1.9–5.8% Native Bit Instability at 0.6–1 V and 15 fJ/bit in 65 nm," IEEE Journal of Solid-State Circuits, vol. 51, no. 3, pp. 763-775, March 2016.
    [29] A. Garg and T. T. Kim, "Design of SRAM PUF with improved uniformity and reliability utilizing device aging effect," in Proc. 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne VIC, 2014, pp. 1941-1944.
    [30] M. S. Golanbari, S. Kiamehr, R. Bishnoi and M. B. Tahoori, "Reliable memory PUF design for low-power applications," in Proc. 2018 19th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, 2018, pp. 207-213.

    無法下載圖示 校內:2024-02-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE