簡易檢索 / 詳目顯示

研究生: 彭士倫
Peng, Shih-Lun
論文名稱: 改變單體奈米晶體和奈米二聚體周遭導電高分子之構型以控制導電高分子-奈米晶體複合材的特性
Tuning the Configuration of Conducting Polymers Around Monomer Nanocrystals and Dimer Nanojunctions to Control the Properties of Conducting Polymer-Nanocrystal Composites
指導教授: 許蘇文
Su-Wen Hsu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 113
中文關鍵詞: 電漿子奈米晶體二聚體奈米結奈米複合材料電漿子耦合效應
外文關鍵詞: plasmonic nanocrystals, dimer nanojunctions, nanocomposites, plasmonic coupling effect
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於以電漿子奈米晶體和高分子組成的奈米複合材料,電漿子奈米晶體周圍的電漿子奈米晶體誘導電磁場可以用於改變其周圍的介電環境,從而調控奈米複合材料的光學(電漿子共振)和電學(導電率)特性。這些性質主要可經由改變包覆在電漿子奈米晶體上的配體和基質之高分子的導電率來控制,其原因為在電漿子誘導電磁場下,奈米複合材料之”局部”(奈米晶體附近)和”整體”介電環境之改變。奈米複合材料的”局部”和”整體”介電環境的變化是由電漿子奈米晶體周圍配體和/或高分子基質的分子鏈重新排列引起的。此介電環境可由下列三個參數進行調整:(1)高分子基質中的奈米晶體的含量;(2)形成奈米晶體複合材之奈米晶體上的配體與高分子基質之導電率;(3)電漿子誘導電磁場的強度。奈米複合材料的光學特性取決於奈米複合材料的”局部”和”整體”介電環境,這使其在電漿子誘導的電磁場下電漿子共振波長(藍移約10 nm)發生顯著變化。然而奈米複合材料的電學性質僅取決於電漿子誘導電磁場下奈米複合材料的”整體”介電環境。在導電高分子基質中生成的奈米複合材料在電漿子誘導電磁場下,其導電率增加三個數量級(從4x10-14到10-10 S/cm)。
      藉由電漿子誘導電磁場改變奈米複合材性質之現象,可因為二聚體奈米結(dimer nanojunctions)所產生之耦合效應(coupling effect)而進一步增強,此源自於在電漿子誘導電磁場下之二聚體奈米結周遭之配體與高分子基質重新排列,導致電漿子奈米晶體之間的間距改變所造成。二聚體奈米結中奈米晶體之間的間距的變化,可導致拉曼訊號顯著改變,但此間距之變化不足以使二聚體奈米結的電漿子響應產生顯著之變化。電漿子誘導電磁場下二聚體奈米結中拉曼訊號的增強因子強烈依賴於以下參數:(1)二聚體奈米結的構象(垂直二聚體或水平二聚體);(2)用於製造二聚體奈米結之奈米晶體之配體或/和基質的導電率;(3)電漿子誘導電磁場的強度。在高導電性之配體(HS-PVK)包覆的AgNCs和高導電性基質(PVK)組成的二聚體奈米結,在外部刺激下其拉曼訊號增強因子可達~500%。
      在外部刺激下具有高度靈敏的光學和電學響應的高分子-電漿子奈米晶體複合材料和對拉曼訊號有高度敏感響應的高分子-二聚體奈米結複合材料非常適合應用於”電磁場”或”光子”傳感器。

    For nanocomposites composed of plasmonic nanocrystals and polymer, the plasmonic nanocrystal induced electromagnetic field around the plasmonic nanocrystals can be used to change the surrounding dielectric environment to tune the optical (plasmonic resonance) and electrical (electrical conductivity) properties of nanocomposites. These properties are mainly controlled by the conductivity of the ligand (coated on plasmonic nanocrystals) and polymer matrix, which led to change the “local” (near the nanocrystal) and “overall” dielectric environment of nanocomposites under plasmon-induced electromagnetic field. The changes in the “local” and “overall” dielectric environments of nanocomposites were caused by the rearrangement of molecular chains of ligand and/or polymer matrix around plasmonic nanocrystals. This dielectric environment can be adjusted by the following three parameters : (1) the content of nanocrystals in the polymer matrix ; (2) the conductivity of the ligand and/or polymer matrix for fabrication of nanocomposite ; (3) the strength of the plasmon-induced electromagnetic field. The optical properties of the nanocomposites depended on the” local” and “overall” dielectric environment of the nanocomposite, which showed a significant change in the plasmon resonance wavelength (blue-shift about 10 nm) under plasmon-induced electromagnetic field. However, the electrical properties of nanocomposites depended only on the “overall” dielectric environment of the nanocomposite under plasmon-induced electromagnetic field. The nanocomposites were constructed in the conducting polymer matrix that resulted in three orders of magnitude increase in the electrical conductivity (from 4 x 10-14 to 10-10 S/cm) of nanocomposites under plasmon-induced electromagnetic field.
      Changing the properties of nanocomposites under plasmon-induced electromagnetic field can be enhanced by the plasmonic coupling effect, which was caused by plasmonic dimer nanojunction. The rearrangement of the ligands of the nanocrystals and the polymer matrix around dimer nanojunctions under plasmon-induced electromagnetic field resulted in the change of the spacing between the plasmonic nanocrystals. The changes in the spacing between nanocrystals in dimer nanojunctions can lead to a significant increase in Raman signals. However, the changes in spacing cannot cause a significant change in the plasmonic response of nanocomposite. The enhancement factor of the Raman signal of nanocomposite under the plasmon-induced electromagnetic field strongly depended on the following parameters : (1) the conformations of the dimer nanojunction (vertical dimer and horizontal dimer) ; (2) the electrical conductivity of ligands and/or polymer matrix for fabrication of dimer nanojunction ; (3) the strength of plasmon-induced electromagnetic field. For dimer nanojunction composed of high conductivity ligand (HS-PVK) coated AgNCs and high conductivity matrix (PVK), the Raman signal enhancement factor of dimer nanojunctions under external stimulus can reach about 500%.
      Polymer-plasmonic nanocrystal composites with highly sensitive optical and electrical responses to external stimuli and polymer-dimer nanojunction composites with highly sensitive responses to Raman signals are very suitable for “electromagnetic field” or “photonic” sensor applications.

    中文摘要 I 英文延伸摘要 III 致謝 XXVI 目錄 XXVII 表目錄 XXX 圖目錄 XXXI 第一章 緒論 1 1-1 奈米複合材 1 1-2 高分子-單顆奈米晶體複合材 5 1-3 高分子-二聚體奈米結複合材 11 第二章 材料與實驗方法 15 2-1 實驗藥品及材料 15 2-2 儀器設備 18 2-3 實驗步驟 21 2-3-1 高分子合成 21 2-3-1-1 RAFT試劑CTA1合成 21 2-3-1-2 RAFT試劑CTA2合成 22 2-3-1-3 TPA單體合成 22 2-3-1-4 HS-PTPA高分子合成 23 2-3-1-5 HS-PVK高分子合成 24 2-3-2 奈米複合材料合成 25 2-3-2-1 奈米銀立方體晶體合成 25 2-3-2-2 基材表面塗佈高分子 27 2-3-2-2-1 基材表面改質 27 2-3-2-2-2 基材表面塗布PS、PTPA及PVK 28 2-3-2-3 在水-空氣界面製備不同表面覆蓋率的單層AgNCs陣列 28 2-3-2-4 轉移並沉積奈米晶體陣列於高分子基材中 29 2-3-2-4-1 沉積接枝非導電高分子的奈米銀晶體陣列於導電/非導電高分子基質中 29 2-3-2-4-2 沉積接枝導電高分子的奈米銀晶體陣列於導電/非導電高分子基質中 30 2-3-3 在高分子基質中合成奈米銀二聚體 33 2-3-3-1 接枝PVP奈米晶體在高分子基質中合成二聚體 33 2-3-3-2 接枝SH-PTPA奈米晶體在高分子基質中合成二聚體 35 2-3-3-3 接枝SH-PVK奈米晶體在高分子基質中合成二聚體 37 2-3-4 高分子-奈米晶體複合材之光學及電學性質量測 39 2-3-4-1 光學性質的量測 39 2-3-4-2 電學性質的量測 40 2-3-5 高分子-二聚體奈米結複合材之感測性能量測 41 第三章 結果與討論 42 3-1 高分子合成與分析 42 3-1-1 Poly (p-triphenylamine) (PTPA)高分子合成 42 3-1-1-1 RAFT試劑 CTA1/CTA2合成 42 3-1-1-2 PTPA之單體p-triphenylamine (p-TPA)之合成 46 3-1-1-3 PTPA高分子合成 48 3-1-2 Polyvinylcarbazole (PVK)高分子合成 60 3-2 電漿子誘導之電磁場對複合材的光學性質之影響 63 3-2-1 奈米晶體陣列之表面覆蓋率對複合材的光學性質之影響 63 3-2-2 電漿子誘導電磁場對複合材的光學性質之影響 70 3-3 電漿子誘導之電磁場對複合材的導電率之影響 78 3-3-1 奈米晶體陣列之表面覆蓋率對複合材的導電率之影響 78 3-3-2 電漿子誘導電磁場對複合材導電率之影響 80 3-4 以拉曼光譜觀測電漿子誘導電磁場對奈米二聚體間距的變化 86 第四章 結論 105 第五章 參考文獻 107

    1. Beecroft, L. L.; Ober, C. K., Nanocomposite Materials for Optical Applications. Chem. Mater. 1997, 9 (6), 1302-1317.
    2. Dutta, K., Optical and Electrical Characterization of Polyaniline-Silicon Dioxide Nanocomposite. Phys. lett., A 2007, 361 (1-2), 141-145.
    3. Alam, M.; Ansari, A. A.; Shaik, M. R.; Alandis, N. M., Optical and Electrical Conducting Properties of Polyaniline/Tin Oxide Nanocomposite. Arab. J. Chem. 2013, 6 (3), 341-345.
    4. Dabbousi, B. O.; Bawendi, M. G.; Onitsuka, O.; Rubner, M. F., Electroluminescence from CdSe Quantum-Dot Polymer Composites. Appl. Phys. Lett. 1995, 66 (11), 1316-1318.
    5. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295 (5564), 2425-2427.
    6. Campbell, I. H.; Crone, B. K., Quantum‐Dot/Organic Semiconductor Composites for Radiation Detection. Adv. Mater. 2006, 18 (1), 77-79.
    7. Schwenn, P. E.; Watt, A. A.; Rubinsztein-Dunlop, H.; Meredith, P., Lead Sulfide Nanocrystal/Conducting Polymer Solar cells, Proc. of SPIE 2006, p 603818.
    8. Wang, T. C.; Rubner, M. F.; Cohen, R. E., Polyelectrolyte Multilayer Nanoreactors for Preparing Silver Nanoparticle Composites: Controlling Metal Concentration and Nanoparticle Size. Langmuir 2002, 18 (8), 3370-3375.
    9. Sarkar, S.; Guibal, E.; Quignard, F.; SenGupta, A. K., Polymer-Supported Metals and Metal Oxide Nanoparticles: Synthesis, Characterization, and Applications. J Nanopart Res 2012, 14 (2).
    10. Von Werne, T.; Patten, T. E., Preparation of Structurally Well-Defined Polymer-Nanoparticle Hybrids with Controlled/Living Radical Polymerizations. JACS 1999, 121 (32), 7409-7410.
    11. Hore, M. J. A., Polymers on Nanoparticles: Structure & Dynamics. Soft Matter 2019, 15 (6), 1120-1134.
    12. Hore, M. J. A.; Korley, L. T. J.; Kumar, S. K., Polymer-Grafted Nanoparticles. J. Appl. Phys. 2020, 128 (3).
    13. Chatterjee, U.; Jewrajka, S. K., Synthesis of Block Copolymer-Stabilized Au-Ag Alloy Nanoparticles and Fabrication of Poly(methyl methacrylate)/Au-Ag Nanocomposite Film. J. Colloid Interface Sci. 2007, 313 (2), 717-723.
    14. Liang, Z. Q.; Dzienis, K. L.; Xu, J.; Wang, Q., Covalent Layer-by-Layer Assembly of Conjugated Polymers and CdSe Nnanoparticles: Multilayer Structure and Photovoltaic Properties. Adv. Funct. Mater. 2006, 16 (4), 542-548.
    15. An, Q.; Huang, T.; Shi, F., Covalent Layer-by-Layer Films: Chemistry, Design, and Multidisciplinary Applications. Chem. Soc. Rev. 2018, 47 (13), 5061-5098.
    16. Lee, S. H.; Harding, J. R.; Liu, D. S.; D’Arcy, J. M.; Shao-Horn, Y.; Hammond, P. T., Li-Anode Protective Layers for Li Rechargeable Batteries via Layer-by-Layer Approaches. Chem. Mater. 2014, 26 (8), 2579-2585.
    17. Anzai, J.; Kobayashi, Y.; Suzuki, Y.; Takeshita, H.; Chen, Q.; Osa, T.; Hoshi, T.; Du, X. Y., Enzyme Sensors Prepared by Layer-by-Layer Deposition of Enzymes on a Platinum Electrode through Avidin-Biotin Interaction. Sens. Actuators B Chem. 1998, 52 (1-2), 3-9.
    18. Sun, J. Q.; Gao, M. Y.; Zhu, M.; Feldmann, J.; Mohwald, H., Layer-by-Layer Depositions of Polyelectrolyte/CdTe Nanocrystal Films Controlled by Electric Fields. J. Mater. Chem. 2002, 12 (6), 1775-1778.
    19. Wang, X. L.; Jiang, Z. Y.; Shi, J. F.; Liang, Y. P.; Zhang, C. H.; Wu, H., Metal-Organic Coordination-Enabled Layer-by-Layer Self-Assembly to Prepare Hybrid Microcapsules for Efficient Enzyme Immobilization. ACS Appl. Mater. Interfaces 2012, 4 (7), 3476-3483.
    20. Xiao, F., Layer-by-Layer Self-Assembly Construction of Highly Ordered Metal-TiO2 Nanotube Arrays Heterostructures (M/TNTs, M= Au, Ag, Pt) with Tunable Catalytic Activities. J. Phys. Chem. C 2012, 116 (31), 16487-16498.
    21. Borges, J.; Mano, J. F., Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chem. Rev. 2014, 114 (18), 8883-8942.
    22. Richardson, J. J.; Bjornmalm, M.; Caruso, F., Technology-Driven Layer-by-Layer Assembly of Nanofilms. Science 2015, 348 (6233).
    23. Cho, J.; Char, K.; Hong, J. D.; Lee, K. B., Fabrication of Highly Ordered Multilayer Films using a Spin Self-Assembly Method. Adv. Mater. 2001, 13 (14), 1076-1078.
    24. Hong, X.; Li, J.; Wang, M. J.; Xu, J. J.; Guo, W.; Li, J. H.; Bai, Y. B.; Li, T. J., Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-Assembly Approach. Chem. Mater. 2004, 16 (21), 4022-4027.
    25. Lee, D.; Rubner, M. F.; Cohen, R. E., All-Nanoparticle Thin-Film Coatings. Nano Lett. 2006, 6 (10), 2305-2312.
    26. Schlenoff, J. B.; Dubas, S. T.; Farhat, T., Sprayed Polyelectrolyte Multilayers. Langmuir 2000, 16 (26), 9968-9969.
    27. Schmitt, J.; Decher, G.; Dressick, W. J.; Brandow, S. L.; Geer, R. E.; Shashidhar, R.; Calvert, J. M., Metal Nanoparticle/Polymer Superlattice Films: Fabrication and Control of Layer Structure. Adv. Mater. 1997, 9 (1), 61-65.
    28. Khan, A. U.; Guo, Y. C.; Chen, X.; Liu, G. L., Spectral-Selective Plasmonic Polymer Nanocomposites Across the Visible and Near-Infrared. ACS Nano 2019, 13 (4), 4255-4266.
    29. Jhang, W. L.; Li, C. J.; Wang, A. S.; Liu, C. W.; Hsu, S. W., Tunable Optical Property of Plasmonic-Polymer Nanocomposites Composed of Multilayer Nanocrystal Arrays Stacked in a Homogeneous Polymer Matrix. ACS Appl. Mater. Interfaces 2020, 12 (46), 51873-51884.
    30. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107 (3), 668-677.
    31. Petryayeva, E.; Krull, U. J., Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing-A review. Anal. Chim. Acta 2011, 706 (1), 8-24.
    32. Montano-Priede, J. L.; Pal, U., Estimating Near Electric Field of Polyhedral Gold Nanoparticles for Plasmon-Enhanced Spectroscopies. J. Phys. Chem. C 2019, 123 (18), 11833-11839.
    33. Tao, A. R.; Habas, S.; Yang, P. D., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310-325.
    34. Sepulveda, B.; Angelome, P. C.; Lechuga, L. M.; Liz-Marzan, L. M., LSPR-Based Nanobiosensors. Nano Today 2009, 4 (3), 244-251.
    35. Lu, X. M.; Rycenga, M.; Skrabalak, S. E.; Wiley, B.; Xia, Y. N., Chemical Synthesis of Novel Plasmonic Nanoparticles. Annu. Rev. Phys. Chem. 2009, 60, 167-192.
    36. Ghosh, S. K.; Nath, S.; Kundu, S.; Esumi, K.; Pal, T., Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids. J. Phys. Chem. B 2004, 108 (37), 13963-13971.
    37. Tagliazucchi, M.; Blaber, M. G.; Schatz, G. C.; Weiss, E. A.; Szleifert, I., Optical Properties of Responsive Hybrid Au@Polymer Nanoparticles. ACS Nano 2012, 6 (9), 8397-8406.
    38. Li, Z.; Yin, Y., Stimuli‐Responsive Optical Nanomaterials. Adv. Mater. 2019, 31 (15), 1807061.
    39. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 1997, 277 (5329), 1078-1081.
    40. Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P., Detection of a Biomarker for Alzheimer's Disease from Synthetic and Clinical Samples using a Nanoscale Optical Biosensor. JACS 2005, 127 (7), 2264-2271.
    41. Sherry, L. J.; Jin, R. C.; Mirkin, C. A.; Schatz, G. C.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms. Nano Lett. 2006, 6 (9), 2060-2065.
    42. Zhang, X. Y.; Young, M. A.; Lyandres, O.; Van Duyne, R. P., Rapid Detection of an Anthrax Biomarker by Surface-Enhanced Raman Spectroscopy. JACS 2005, 127 (12), 4484-4489.
    43. Taton, T. A.; Lu, G.; Mirkin, C. A., Two-Color Labeling of Oligonucleotide Arrays via Size-Selective Scattering of Nanoparticle Probes. JACS 2001, 123 (21), 5164-5165.
    44. Naveen, M. H.; Gurudatt, N. G.; Shim, Y. B., Applications of Conducting Polymer Composites to Electrochemical Sensors: A review. Appl. Mater. Today 2017, 9, 419-433.
    45. Yan, Q.; Yuan, J. Y.; Cai, Z. N.; Xin, Y.; Kang, Y.; Yin, Y. W., Voltage-Responsive Vesicles Based on Orthogonal Assembly of Two Homopolymers. JACS 2010, 132 (27), 9268-9270.
    46. Wang, S. W.; Chen, Z.; Umar, A.; Wang, Y.; Yin, P. G., Electric-Field Induced Layer-by-Layer Assembly Technique with Single Component for Construction of Conjugated Polymer Films. RSC Adv. 2015, 5 (72), 58499-58503.
    47. McFarland, F. M.; Liu, X. X.; Zhang, S.; Tang, K.; Kreis, N. K.; Gu, X. D.; Guo, S., Electric Eield Induced Assembly of Macroscopic Fibers of Poly(3-hexylthiophene). Polymer 2018, 151, 56-64.
    48. Yin, Z. G.; Zheng, Q. D., Controlled Synthesis and Energy Applications of One-Dimensional Conducting Polymer Nanostructures: An Overview. Adv. Energy Mater. 2012, 2 (2), 179-218.
    49. Jung, I.; Kim, M.; Kwak, M.; Kim, G.; Jang, M.; Kim, S. M.; Park, D. J.; Park, S., Surface Plasmon Resonance Extension through Two-Block Metal-Conducting Polymer Nanorods. Nat. Commun. 2018, 9.
    50. Maurer, T.; Nicolas, R.; Leveque, G.; Subramanian, P.; Proust, J.; Beal, J.; Schuermans, S.; Vilcot, J. P.; Herro, Z.; Kazan, M.; Plain, J.; Boukherroub, R.; Akjouj, A.; Djafari-Rouhani, B.; Adam, P. M.; Szunerits, S., Enhancing LSPR Sensitivity of Au Gratings through Graphene Coupling to Au Film. Plasmonics 2014, 9 (3), 507-512.
    51. Dormeny, A. A.; Sohi, P. A.; Kahrizi, M., Design and Simulation of a Refractive Iindex Sensor Based on SPR and LSPR using Gold Nanostructures. Results Phys. 2020, 16.
    52. Postma, A.; Davis, T. P.; Li, G. X.; Moad, G.; O'Shea, M. S., RAFT Polymerization with Phthalimidomethyl Trithiocarbonates or Xanthates. On the Origin of Bimodal Molecular Weight Distributions in Living Radical Polymerization. Macromolecules 2006, 39 (16), 5307-5318.
    53. Williams, P. E.; Moughton, A. O.; Patterson, J. P.; Khodabakhsh, S.; O'Reilly, R. K., Exploring RAFT Polymerization for the Synthesis of Bipolar Diblock Copolymers and Their Supramolecular Self-assembly. Polym. Chem. 2011, 2 (3), 720-729.
    54. Shen, W.; Qiu, Q.; Wang, Y.; Miao, M.; Li, B.; Zhang, T.; Cao, A.; An, Z., Hydrazine as a Nucleophile and Antioxidant for Fast Aminolysis of RAFT Polymers in Air. Macromol Rapid commun 2010, 31 (16), 1444-1448.
    55. Azcarate, J. C.; Corthey, G.; Pensa, E.; Vericat, C.; Fonticelli, M. H.; Salvarezza, R. C.; Carro, P., Understanding the Surface Chemistry of Thiolate-Protected Metallic Nanoparticles. J. Phys. Chem. Lett. 2013, 4 (18), 3127-3138.
    56. Yee, K. K.; Reimer, N.; Liu, J.; Cheng, S. Y.; Yiu, S. M.; Weber, J.; Stock, N.; Xu, Z. T., Effective Mercury Sorption by Thiol-Laced Metal-Organic Frameworks: in Strong Acid and the Vapor Phase. JACS 2013, 135 (21), 7795-7798.
    57. Chen, G.; Wang, Y.; Yang, M. X.; Xu, J.; Goh, S. J.; Pan, M.; Chen, H. Y., Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers. JACS 2010, 132 (11), 3644-3645.
    58. Lee, S. Y.; Hung, L.; Lang, G. S.; Cornett, J. E.; Mayergoyz, I. D.; Rabin, O., Dispersion in the SERS Enhancement with Silver Nanocube Dimers. ACS Nano 2010, 4 (10), 5763-5772.
    59. Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G., Selective Detection of Cysteine and Glutathione using Gold Nanorods. JACS 2005, 127 (18), 6516-6517.
    60. Yaraki, M. T.; Rezaei, S. D.; Tan, Y. N., Simulation Guided Design of Silver Nanostructures for Plasmon-Enhanced Fluorescence, Singlet Oxygen Generation and SERS Applications. Phys. Chem. Chem. Phys. 2020, 22 (10), 5673-5687.
    61. Hooshmand, N.; El-Sayed, M. A., Collective Multipole Oscillations Direct the Plasmonic Coupling at the Nanojunction Interfaces. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (39), 19299-19304.
    62. Liu, X. L.; Liang, S.; Nan, F.; Yang, Z. J.; Yu, X. F.; Zhou, L.; Hao, Z. H.; Wang, Q. Q., Solution-Dispersible Au Nanocube Dimers with Greatly Enhanced Two-Photon Luminescence and SERS. Nanoscale 2013, 5 (12), 5368-5374.
    63. Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J., Preferential End-to-End Assembly of Gold Nanorods by Biotin-Streptavidin Connectors. JACS 2003, 125 (46), 13914-13915.
    64. Correa‐Duarte, M. A.; Pérez‐Juste, J.; Sánchez‐Iglesias, A.; Giersig, M.; Liz‐Marzán, L. M., Aligning Au Nanorods by using Carbon Nanotubes as Templates. Angew. Chem. Int. Ed. 2005, 117 (28), 4449-4452.
    65. Khanal, B. P.; Zubarev, E. R., Rings of Nanorods. Angew. Chem. Int. Ed. 2007, 46 (13), 2195-2198.
    66. Liao, W.-Y.; Huang, J.-R.; Hsu, S.-W., Fabrication of a Large-Scale Plasmonic Nanojunction for Chemical Sensing. ACS Appl. Nano Mater. 2022.
    67. Zheng, M. P.; Gu, M. Y.; Jin, Y. P.; Jin, G. L., Optical Properties of Silver-Dispersed PVP Thin Film. Mater. Res. Bull. 2001, 36 (5-6), 853-859.
    68. Fang, Y.-K.; Lee, W.-Y.; Tuan, C.-S.; Lu, L.-H.; Teng, W.-J.; Chen, W.-C., New poly (4, 4′-dicyano-4 ″-vinyl-triphenylamine) Host Material for Single-Layer Ir Complex Phosphorescent Light-emitting Devices. Polym J 2010, 42 (4), 327-335.
    69. Grigoras, M.; Negru, O.-I., Synthesis of Star poly (N-vinylcarbazole) by Microwave-Assisted Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT). Polymers 2012, 4 (2), 1183-1194.
    70. Zhang, T. T.; Huang, W. B.; Zhang, N.; Huang, T.; Yang, J. H.; Wang, Y., Grafting of Polystyrene onto Reduced Graphene Oxide by Emulsion Polymerization for Dielectric Polymer Composites: High Dielectric Constant and Low Dielectric Loss Tuned by Varied Grafting Amount of Polystyrene. Eur. Polym. J. 2017, 94, 196-207.
    71. Guo, M.; Hayakawa, T.; Kakimoto, M.; Goodson, T., Organic Macromolecular High Dielectric Constant Materials: Synthesis, Characterization, and Applications. J. Phys. Chem. B 2011, 115 (46), 13419-13432.
    72. D'Angelo, P.; Barra, M.; CassineSe, A.; Maglione, M. G.; Vacca, P.; Minarini, C.; Rubino, A., Electrical Transport Properties Characterization of PVK (poly N-vinyl carbazole) for Electrolumine Scent Devices Applications. Solid State Electron 2007, 51 (1), 123-129.
    73. Li, A. S.; Ma, Z. Y.; Wu, J. X.; Li, P.; Wang, H. L.; Geng, Y. J.; Xu, S. P.; Yang, B.; Zhang, H. Y.; Cui, H. N.; Xu, W. Q., Pressure-Induced Wide-Range Reversible Emission Shift of Triphenylamine-Substituted Anthracene via Hybridized Local and Charge Transfer (HLCT) Excited State. Adv. Opt. Mater. 2018, 6 (3).
    74. Moran, C. H.; Rycenga, M.; Zhang, Q.; Xia, Y. N., Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2011, 115 (44), 21852-21857.
    75. Alsawafta, M.; Wahbeh, M.; Truong, V.-V., Investigation of the Validity of the Universal Scaling Law on Linear Chains of Silver Nanoparticles. J. Nanomater. 2015, 2015.
    76. Zhang, W. B.; Wang, C.; Liu, G.; Zhu, X. J.; Chen, X. X.; Pan, L.; Tan, H. W.; Xue, W. H.; Ji, Z. H.; Wang, J.; Chen, Y.; Li, R. W., Thermally-Stable Resistive Switching with a Large ON/OFF Ratio Achieved in Poly(triphenylamine). ChemComm 2014, 50 (80), 11856-11858.
    77. Mbarek, M.; Sagaama, L.; Alimi, K., New Copolymer Involving PVK and F8BT for Organic Solar Cells Applications: Design, Synthesis, Characterization and Theoretical Studies. Opt. Mater. 2019, 91, 447-454.

    下載圖示 校內:2025-07-22公開
    校外:2025-07-22公開
    QR CODE