簡易檢索 / 詳目顯示

研究生: 江翼廷
Jaing, Yi-Ting
論文名稱: 區塊內涵式算術編碼於分集階層樹編碼後之改良
Block Context-based Arithmetic Codes for Improvement of SPIHT Coders
指導教授: 楊家輝
Yang, Jar-Fer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 91
中文關鍵詞: 內涵式算術編碼零樹編碼小波轉換
外文關鍵詞: context-based arithmetic code, SPIHT, wavelet transform
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來的研究發展顯示基於小波轉換的影像壓縮技術提供了傳統影像壓縮技術所沒有的優點,例如在漸進式傳輸、壓縮比,以及頻寬利用性等均較傳統技術來的佳。由Shapiro所提出的嵌入式零樹編碼法(EZW)以及由Said and Pearlman所提出的分集階層樹編碼法(SPIHT)均展示出以小波轉換為基礎之影像壓縮具競爭力的效能。又最新一代的靜態影像壓縮標準JPEG2000,在其演算法內也有採用小波轉換;然而,JPEG2000的複雜度較上述兩種編碼法來的高。
    在本篇論文裡,我們針對無算術編碼之SPIHT提出區塊內涵式算術編碼來增進其編碼效能。我們所提出的方法平均較無算術編碼之SPIHT於PSNR上約增加0.2~0.7dB,並且此方法也可以應用到其他的零樹編碼法。

    Recent research advances have shown that wavelet-based image compression techniques offer several advantages over traditional techniques in terms of progressive transmission capability, compression efficiency, and bandwidth utilization. The embedded zero-tree wavelet (EZW) coding technique suggested by Shapiro, and its modification—set partitioning in hierarchical trees (SPIHT), suggested by Said and Pearlman—demonstrate the competitive performance of wavelet based compression schemes. Even the new JPEG2000 image coding standard, employ a wavelet transform in its algorithm. However, the complexity of JPEG2000 standard is higher than the zero-tree coding methods.
    In this thesis, we focus on the SPIHT algorithm and proposing a suitable block context-based arithmetic codes for improving the SPIHT coders. The proposed arithmetic codes are shown to yield PSNR improvements averaging 0.2~0.7 dB and are applicable to other zero-tree coding methods

    第一章. 序論......................................1 1.1簡介 ........................................1 1.2論文大綱 ......................................2 第二章. 零樹編碼與算術編碼 ......................4 2.1簡介 ........................................4 2.2小波轉換 ......................................5 2.2.1 連續函數之小波轉換.......................5 2.2.2 離散小波轉換.............................6 2.2.3 小波係數.................................9 2.3次頻帶係數的關係..............................10 2.4次頻帶係數之顯著性............................12 2.5嵌入式零樹編碼................................14 2.5.1 顯著關之判別............................17 2.5.2 精煉關之判別............................17 2.6分集階層數編碼法..............................19 2.6.1 SPIHT之宗親關係.........................20 2.6.2 SPIHT裡的零樹結構.......................21 2.6.3 SPIHT裡的串列...........................22 2.6.4 SPIHT編碼法說明.........................23 2.6.5 SPIHT演算過程...........................24 2.6.6 討論....................................26 2.7 漸進式傳輸與有興趣區域編碼.................................................27 2.8 算術編碼.....................................30 2.8.1 演算法的介紹...........................31 2.8.2 討論...................................34 第三章. SPIHT之內涵式算術編碼....................35 3.1簡介..........................................35 3.2 算術編碼器的設計.............................38 3.2.1 四素內涵式算術編碼.....................39 3.2.2 增強型內涵式的算術編碼器...............54 3.2.3 初始化機率模型的改進...................66 3.3 總結.........................................71 第四章. 適用於監控系統之視訊壓縮編碼器應用.......73 4.1簡介..........................................73 4.2壓縮核心介紹..................................75 4.2.1 內框影像編碼方法........................75 4.2.2 外框影像編碼方法........................84 4.3討論..........................................87 第五章. 結論與展望...............................88 參考文獻.........................................89

    [1] W. Pennebaker and J. Mitchell, JPEG Still Image Data Compression
    Standard. New York: Van Nostrand Reinhold, 1993.
    [2] Coding of Moving Pictures and Associated Audio for Digital Storage Media up to Sbout 1.5 Mbit/s, Tech. Rep., ISO/IEC IS 11 172(MPEG-1), 1993.
    [3] Generic Coding of Moving Pictures and Associated Audio, Tech. Rep., ISO/IEC DIS 13 818(MPEG-2), 1994.
    [4] L. Chiariglione, “MPEG and multimedia communications,” IEEE Trans.Circuits Syst. Video Technol., vol. 7, pp. 5–18, Feb. 1997.
    [5] T. Sikora, “The MPEG-4 video standard verification model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 19–31, Feb. 1997.
    [6] F. Pereira and T. Alpert, “MPEG-4 video subjective test procedures and results,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 32–51, Feb. 1997.
    [7] “Video codec for audiovisual services at p x 64 kb/s,”, ITU-T Rec. H.261, 1990.
    [8] Video Coding for Low Bit Rate Communications, ITU-T Draft Rec. H.263, Dec. 1995.
    [9] J. Shapiro, “Embedded image coding using zerotree of wavelet coefficients,” IEEE Trans. Signal Processing, vol. 41, pp. 3445–3463, Dec. 1993.
    [10] A. Said andW. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, pp. 243–250, June 1996.
    [11] JPEG 2000 verification model 7.2, ISO/IEC JTC1/SC29/WG1, May 2000.
    [12] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Trans. Image Processing, vol. 9, pp. 1158–1170, July
    [13] Daubechies. “Orthonormal bases of compactly supported wavelets.” Commun. Pure Appl. Math. Vol. 41. pp. 909-996. Nov. 1988.
    [14] G. Mallat, “A theory for multiresolution signal decomposition : The Wavelet Representation,” IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 11, NO. 7, July 1989.
    [15] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, June 1987.
    [16] D. Taubman and Michael W.Marcellin “JPEG2000 image compression fundamentals, standards, and practice”
    [17] D. Taubman and A. Zakhor, “Multirate 3-D Subband Coding of Video,” IEEE Trans. Image Processing, 3(5):572–588, Sept. 1994.
    [18] P. E. Tischer, R. T. Worley, A. J. Maeder, and M. Goodwin, “Contextbased lossless image compression,” Comput. J., vol. 36, no. 1, 1993.
    [19] E. L. Schwartz, A. Zandi, and M. Boliek, “Implementation of compression with reversible embedded wavelets,” in Proc. SPIE, vol. 2564, 1995.
    [20] N. Memon, X. Wu, and B. L. Yeo, “Entropy coding techniques for lossless image compression with reversible integer wavelet transforms,” IBM , Res. Rep. RC21010, Oct. 22, 1997.
    [21] X.Wu and N. Memon, “Context-based, adaptive, lossless image codec,” IEEE Trans. Commun., vol. 45, pp. 437–444, Apr. 1997.
    [22] C. Chrysafis and A. Ortega, “Efficient context-based entropy coding for lossy wavelet coefficients image compression,” in Proc. DCC, Mar.1997, pp. 241–250.
    [23] Ramaswamy, V.N. and Namuduri, K.R. and Ranganathan, N., “Context based lossless intraframe coding of video sequence using embedded zerotree wavelets,” in Proc. Int. Symp. Circuits and Systems, May–June 1999.
    [24] V. N. Ramaswamy, “Lossless image compression using wavelet decomposition,” Ph.D dissertation, Dept. Comput. Sci. Eng., Univ. of South Florida, Tampa, FL, Aug. 1998.
    [25] N. V. Bougloris and M. G. Strinzis, “Reversible multiresolution image coding based on adaptive lifting,” Proc. IEEE Int. Conf. Image Processing, Oct. 24–28, 1999.
    [26] M. D. Adams and F. Kossentini, “Reversible integer-to-integer wavelet transforms for image compression: Performance evaluation and analysis,” IEEE Trans. Image Processing, vol. 9, pp. 1010–1024, June 2000.
    [27] G. Minami, Z. Xiong, A. Wang, and S. Mehrotra, “3-D wavelet coding of video with arbitrary regions of support,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 1063–1068, Sept. 2001.
    [28] E. Atsumi and N. Farvardin, “Lossy/lossless region-of-interest image coding based on set partitioning in hierarchical trees,” in Proc. IEEE Int. Conf. Image Processing (ICIP-98), Chicago, IL, Oct. 1998.
    [29] D. S. Crus, T. Ebrahimi, M. Larsson, J. Askelöf, and C. Christopoulos, “Region of interest coding in JPEG2000 for interactive client/sever applications,” in Proc. IEEE 3rd Workshop on Multimedia Signal Processing, 1999, pp. 389–394.
    [30] C. Christopoulos, J. Askelöf, and M. Larsson, “Efficient region of interest coding techniques in the upcoming JPEG2000 still image coding standard,” in Proc. IEEE Int. Conf. Image Processing (ICIP-2000), Vancouver, Canada, Sept. 2000.

    下載圖示 校內:2004-06-25公開
    校外:2004-06-25公開
    QR CODE