簡易檢索 / 詳目顯示

研究生: 林進富
Lin, Jin-Fu
論文名稱: 低功率導管式和循環式類比至數位轉換器之設計與測試
Design and Test of Low Power Pipelined/Cyclic Analog-to-Digital Converters
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 175
中文關鍵詞: 具關連性重複取樣技術導管式類比至數位轉換器類差動放大器轉換碼式線性度測試方法
外文關鍵詞: correlated double sampling, pipelined, cyclic, ADC
相關次數: 點閱:88下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出數個應用於導管式和循環式類比至數位轉換器之電路設計與測試技術,其分別具有低功率消耗以及有效減少測試時間和偵錯困難度的優點。本論文所提出之電路設計與測試技術簡述如下:
    (1) 電路設計技術
    本論文提出兩種新型具關連性重複取樣技術:分時多工式和分裂電容式具關連性重複取樣技術。此兩種技術可有效克服傳統具關連性重複取樣技術的兩倍電容負載和需要額外的時脈相位等問題,並具有較低功率消耗的優點。除此之外,本論文亦提出一直接耦合式具關連性電壓位移技術,該技術可大幅加快傳統具關連性電壓位移技巧的操作速度和加強校正增益誤差的能力。
    在本論文中,我們實現兩個低功率導管式類比至數位轉換器以驗證本論文所提出之兩種具關連性重複取樣技術。第一個設計採用分時多工式具關連性重複取樣技術,在0.13微米互補式金氧半電晶體製程下,實現一個9位元,100百萬次/秒的複合導管循序漸近式之類比至數位轉換器。藉由所提出之分時多工式具關連性重複取樣技術,此設計無需取樣與維持電路,並且可以僅使用低增益放大器來實現高精確度的導管式類比至數位轉換器,藉此有效降低類比至數位轉換器的消耗功率。除此之外,在電路架構上,我們使用分時多工式循序漸近式類比至數位轉換器來實現後級管路級,以更進一步降低整體轉換器的功率消耗。
    第二個設計採用分裂電容式具關連性重複取樣技術,在0.18微米互補式金氧半電晶體製程下,實現一個10位元,60百萬次/秒的導管式類比至數位轉換器。分裂電容式具關連性重複取樣技術可更進一步避免先前分時多工式具關連性重複取樣技術的兩倍電容負載問題,藉此更提高類比至數位轉換器的轉換效率。另外,在此設計中,我們提出一個新型高功率效率AB式類差動放大器,該放大器相較於傳統全差動架構具有更低的功率消耗的優點,但此電路對於共模準位漂移極為敏感,因此,我們提出一個名為積分式共模穩定電路以克服此問題。
    除了導管式類比至數位轉換器的電路技術開發,本論文亦針對衛星影像感測系統的應用,開發新型電路技術以實現一個10位元,14百萬次/秒之低功率循環式類比至數位轉換器。在此設計中,我們提出一運算放大器和電容共用技巧,用以降低循環式類比至數位轉換器的功率消耗,並且採用高功率效率、寬頻的增益提升運算放大器架構來更進一步降低電路的功率消耗。
    (2) 測試技術
    為了有效減少導管式和循環式類比至數位轉換器的測試時間,本論文提出一個轉換碼式線性度測試方法。此方法藉由詳細分析管路級的非理想行為,歸納出其特定線性度錯誤的表現行為,再利用導管式和循環式類比至數位轉換器在架構上的規則性,推演出可以只測試少數特定的轉換碼即可得到準確的導管式和循環式類比至數位轉換器的線性度測試結果,以減少測試時間。為了能夠準確偵測出具代表性的轉換碼,本論文提出一個簡單的測試輔助數位電路,使所提出的測試方法能更廣泛地應用於具有比較器誤差校正的導管式和循環式類比至數位轉換器。我們利用台積電0.35微米互補式金氧半電晶體製程實現一12位元,25百萬次/秒的導管式類比至數位轉換器來驗證所提出之測試方法。實驗結果顯示,本論文所提出之測試方法只需傳統直方圖式線性度測試方法9.3%的測試時間。
    此外,本論文提出一數位式輔助偵錯方法,透過將每級待測電路適當地加以重組以分離出各種錯誤效應,藉此避免各種錯誤效應互相蒙蔽的問題,達到導管式和循環式類比至數位轉換器的偵錯目的。此方法只需要簡單的數位電路來產生測試訊號即可有效偵測出電路中的運算放大器實際增益、電容不匹配、待測管路級的輸出偏移電壓和比較器輸入偏移電壓。額外加入的重組開關只會增加少許電路面積,並且不會對電路原本的特性造成影響。針對所提出之錯誤偵測技術,本論文藉由蒙地卡羅模擬來驗證此方法的有效性和可靠度。

    This dissertation proposes several circuit design and test techniques for pipelined/cyclic analog-to-digital converters (ADCs). The proposed design and test techniques have the advantages of low power consumption, short test time and less difficulty in debugging. The proposed techniques can be categorized and summarized as follows:
    1) Circuit Design Techniques
    In this dissertation, two correlated double sampling (CDS) techniques, i.e. time-interleaved CDS and split-capacitor CDS, are proposed to overcome the problems of double capacitive loading and one extra clock phase in prior CDS techniques. In addition, a direct-coupled correlated level shifting (CLS) technique is proposed to enhance the operating speed and gain-enhancement ability of prior CLS techniques.
    Two pipelined ADCs are implemented to verify the proposed CDS techniques. First, a 9-bit, 100-MS/s hybrid pipelined-SA ADC with the proposed time-interleaved CDS is implemented in the 0.13 um triple-well 1P8M CMOS process. With the help of the time-interleaved CDS, low-gain amplifiers and an SHA-less architecture can be used to effectively reduce power consumption of a pipelined ADC. In addition, the back-end pipelined stages are replaced by a low-power time-interleaved successive approximation (SA) ADC to further reduce the power consumption.
    Second, a 10-bit 60-MS/s pipelined ADC with the proposed split-capacitor CDS is implemented in a pure digital 0.18um 1P5M CMOS process. The double loading problem of conventional CDS techniques can be overcome by manipulating the proposed split-capacitor CDS. Low-gain amplifiers and an SHA-less architecture are also used in this design. Moreover, a power-efficient class-AB pseudo-differential op-amp and its corresponding integrator-based common mode stabilization (IB-CMS) method are developed to further reduce the power consumption of the ADC.
    In addition to the two pipelined ADCs with the proposed CDS techniques, a low-power 10-bit, 14-MS/s cyclic analog-to-digital converter (ADC) is developed in the TSMC 0.18-um triple-well 1P3M CMOS image sensor (CIS) process for a satellite CMOS image sensor application. Capacitor and op-amp reuse techniques are proposed to reduce the power consumption and the occupied silicon area. Moreover, a power-efficient wide-bandwidth telescopic cascoded gain boosting amplifier with capacitive level shifters is adopted to further decrease its power consumption.
    2) Circuit Testing Techniques
    A transition-code based method is proposed to reduce the linearity testing time of pipelined and cyclic ADCs. By employing specific architecture-dependent rules, only a few specific transition codes need to be measured to accomplish the linearity test of a pipelined ADC. In addition, a simple digital Design-for-Test (DfT) circuit is proposed to detect representative transition codes of each pipelined stage. With the DfT circuit, the proposed method can be extensively applied for pipelined ADCs with digital error correction (DEC) technique used to correct offset errors. Experimental results show that the proposed method can achieve high test accuracy for a 12-bit, 25-MS/s pipelined ADC by measuring only 9.3% of the total samples in a conventional histogram based method.
    To accurately diagnose error sources and significantly reduce debugging effort in pipelined ADCs, a digital design-for-diagnosis method is also proposed in this dissertation. The stage under test (SUT) is configured to separate each error effect. Stages after the SUT are properly configured as a cyclic ADC to digitize the residual output voltage of the SUT. Critical circuit parameters, such as op-amp gain, capacitor mismatch, stage offset, and comparator offset, are identified in the digital domain. Accurate analog test stimuli are not necessary for the proposed design-for-diagnosis scheme. A simple digital decoder is employed to generate the test signals. The DfT circuitry induces minor area overhead and negligible performance degradation of the circuit under test. Monte Carlo simulations are performed to demonstrate the effectiveness and reliability of the proposed method.

    List of Tables XII List of Figures XIII Chapter 1 Introduction 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 8 Chapter 2 Low-Power Pipelined ADCs without High-Gain Op-Amp 10 2.1 PROPOSED CDS TECHNIQUES 11 2.1.1 Conventional MDAC Architecture 11 2.1.2 MDAC Architectures with Prior CDS Techniques 13 2.1.2.1 Conventional CDS Technique [42] 13 2.1.2.2 Time-Shifted CDS Technique [43] 15 2.1.3 Proposed SHA with Time-Interleaved CDS Technique 18 2.1.4 Proposed MDAC with Time-Interleaved CDS Technique 20 2.1.4.1 Circuit Operation 20 2.1.4.2 Design Considerations of Channel Mismatches 21 2.1.5 Proposed MDAC with Split-Capacitor CDS Technique 23 2.2 A 9-BIT, 100-MS/S LOW-POWER HYBRID PIPELINED-SA ADC WITH TIME-INTERLEAVED CDS TECHNIQUE 26 2.2.1 Architecture 26 2.2.2 Design Considerations for SHA-less Architecture 27 2.2.3 Power-Efficient Back-End Pipelined Stage Design 29 2.2.3.1 Power-Scaling Limitations in Conventional Pipelined ADC 29 2.2.3.2 Resolution Selection of Time-Interleaved SA ADC 30 2.2.4 Circuit Implementations and Design Considerations for Back-End SA ADC 35 2.2.5 Low-Power and Low-Gain Amplifier 38 2.2.6 Experimental Results 40 2.3 A 10-BIT, 60-MS/S LOW-POWER PIPELINED ADC WITH SPLIT-CAPACITOR CDS TECHNIQUE 45 2.3.1 Architecture 45 2.3.2 Design Issues of SHA-Less Architecture 46 2.3.3 Pseudo-Differential Op-Amp Architecture 49 2.3.4 Measurement Results 52 2.4 PROPOSED CORRELATED LEVEL SHIFTING (CLS) TECHNIQUE 56 2.4.1 Introduction 56 2.4.2 Conventional CLS Technique [48] 57 2.4.3 Prior Cross-Coupled CLS Technique [105] 59 2.4.4 Proposed Direct-Coupled CLS Technique 60 2.4.5 Simulation Results 62 2.5 SUMMARY 64 Chapter 3 Low-Power Cyclic ADC for CMOS Image Application 66 3.1 INTRODUCTION 66 3.2 ARCHITECTURE OF PROPOSED CYCLIC ADC 69 3.2.1 Conventional Architecture 69 3.2.2 Review of Previous Loading-Free Technique [30] 69 3.2.3 MDAC Architecture 72 3.2.4 Proposed Capacitor Reuse Technique 74 3.2.5 Circuit Diagram 76 3.3 CIRCUIT IMPLEMENTATIONS 79 3.3.1 Programmable Gain Amplifier (PGA) 79 3.3.2 Operational Amplifier 81 3.3.3 Sub-ADC 82 3.4 EXPERIMENTAL RESULTS 83 3.5 SUMMARY 91 Chapter 4 Transition-Code Based Linearity Test Method 93 4.1 INTRODUCTION 93 4.2 ERROR MECHANISM OF PIPELINED ADCS 95 4.3 TESTING CONCEPT OF PROPOSED TRANSITION-CODE BASED METHOD 99 4.3.1 Error Effects in the First Pipelined Stage 100 4.3.2 Error Effects in Multiple Pipelined Stages 101 4.4 TRANSITION CODE DETECTION 102 4.4.1 Offset Effect in the Proposed Method 103 4.4.2 Proposed Design-for-Test Circuit 105 4.5 TEST PROCEDURE 107 4.5.1 Estimate ADC Offset 108 4.5.2 Detect Transition Codes 109 4.5.3 Test Transition Codes 111 4.5.4 Fill Results in Un-selected Transition Codes 113 4.6 EXPERIMENTAL RESULTS 114 4.6.1 Simulation Results 115 4.6.2 Measurement Results 119 4.7 SUMMARY 127 Chapter 5 Digital Design-for-Diagnosis Method for Pipelined/Cyclic ADCs 128 5.1 INTRODUCTION 128 5.2 ERROR MECHANISM OF PIPELINED ADCS 129 5.3 IDENTIFYING GAIN ERROR SOURCES 130 5.3.1 Concept 130 5.3.2 Op-Amp Gain 132 5.3.3 Capacitor Mismatch 133 5.3.4 Considerations of Test Signal 134 5.3.5 Back-End ADC 137 5.4 IDENTIFYING OFFSET ERROR SOURCES 139 5.4.1 Input Referred Noise of Stage under Test 139 5.4.2 Comparator Offset 140 5.6 IDENTIFICATION ACCURACY 142 5.5.1 IDENTIFICATION ABILITY 142 5.5.2 IDENTIFICATION ERROR 143 5.6 CIRCUIT IMPLEMENTATION 145 5.6.1 Design-for-Diagnosis Pipelined Stage 146 5.6.2 Test Signal Generator 146 5.6.3 Architecture of Proposed Diagnosis Method 147 5.7 SIMULATION RESULTS 148 5.8 SUMMARY 152 Chapter 6 Conclusions and Future Work 153 6.1 CONCLUSIONS 153 6.2 FUTURE WORK 156 Reference 158

    [1] K. C. Zangi and R. D. Koilpillai, “Software radio issues in cellular base stations,” IEEE J. Select. Areas Commun., vol. 17, no. 4, pp. 561-573, Apr. 1999.
    [2] X. Bo, V.-G. Alberto, and S. S. Edgar, “A 10-bit 44-MS/s 20-mW configurable time-interleaved pipeline ADC for a dual-mode 802.11b/Bluetooth receiver,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 530-539, Mar. 2006.
    [3] O. A. Adeniran and A. Demosthenous, “An ultra-energy-efficient wide-bandwidth video pipeline ADC using optimized architectural partitioning,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 12, pp. 2485-2497, Mar. 2006.
    [4] A. M. A. Ali, C. Dillon, R. Sneed, A.S. Morgan, S. Bardsley, J. Kornblum, and L. Wu, “A 14-bit 125 MS/s IF/RF sampling pipelined ADC with 100 dB SFDR and 50 fs jitter,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1846-1855, Aug. 2006.
    [5] H. V. d. Vel. B. A. J. Butter, H. v. d. Ploeg, M. Vertregt, G. J. G. M. Geelen, and E. J. F. Paulus, “A 1.2-V 250-mW 14-b 100-MS/s digitally calibrated pipeline ADC in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1047-1056, Apr. 2009.
    [6] S. H. Lewis and P. R. Gray, “A pipelined 5-Msample/s 9-bit analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. sc-22, no. 6, pp. 954 - 961, Dec. 1987.
    [7] T. B. Cho and P. R. Gray, “A 10 b 20 Msample/s, 35 mW pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 30, no. 3, pp. 166 - 172, Mar. 1995.
    [8] G. V. d. Plas, S. Decoutere, and S. Donnay, “A 0.16 pJ/conversion-step 2.5mW 1.25GS/s 4b ADC in a 90nm digital CMOS process,” ISSCC Dig. Tech. Papers, Feb. 2006, pp. 566-567.
    [9] Y. Shimizu, S. Murayama, K. Kudoh, H. Yatsuda, and A. Ogawa, “A 30mW 12b 40MS/s subranging ADC with a high-gain offset-canceling positive-feedback amplifier in 90nm digital CMOS,” ISSCC Dig. Tech. Papers, Feb. 2006, pp. 218-219.
    [10] J. Craninckx and G. Van der Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm digital CMOS,” ISSCC Dig. Tech. Papers, Feb. 2007, pp. 246-247.
    [11] K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger, “A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers,” IEEE J. Solid-State Circuits, vol. 32, no. 3, pp. 312-320, Mar. 1997.
    [12] N. Sasidhar, Y.-J. Kook, S. Takeuchi, K. Hamashita, K. Takasuka, P. K. Hanumolu, and U. K. Moon, “A low power pipelined ADC using capacitor and opamp sharing technique with a scheme to cancel the effect of signal dependent kickback,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2392-2401, Sep. 2009.
    [13] B. G. Lee, B. M. Min, G. Manganaro, and J. W. Valvano, “A 14-b 100-MS/s pipelined ADC with a merged SHA and first MDAC,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2613-2619, Dec. 2008.
    [14] D. Kurose, T. Ito, T. Ueno, T. Yamaji, and T. Itakura, “55-mW 200-MSPS 10-bit pipeline ADCs for wireless receivers,” IEEE J. Solid-State Circuits, vol. 41, no. 7, pp. 1589-1595, Jul. 2006.
    [15] D. Garrity, D. LoCascio, C. Cavanagh, M. Nizam, and C. Guenther, “A single analog-to-digital converter that converts two separate channels (I and Q) in a broadband radio receiver,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1458-1469, Jun. 2008.
    [16] S.-C. Lee, K.-D. Kim, J.-K. Kwon, J. Kim, and S.-H. Lee, “A 10-bit 400-MS/s 160-mW 0.13-m CMOS dual-channel pipeline ADC without channel mismatch calibration,” IEEE J. Solid-State Circuits, vol. 41, no. 7, pp. 1596-1605, Jul. 2006.
    [17] S. K. Gupta, M. A. Inerfield, and J. Wang, “A 1-GS/s 11-bit ADC with 55-dB SNDR, 250-mW power realized by a high bandwidth scalable time-interleaved architecture,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2650-2657, Dec. 2006.
    [18] H.-C. Choi, Y.-J. Kim, G.-C. Ahn, and S.-H. Lee, “A 1.2-V 12-b 120-MS/s SHA-free dual-channel Nyquist ADC based on midcode calibration,” IEEE J. Solid-State Circuits, vol. 56, no. 5, pp. 894-901, May 2009.
    [19] N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 48, no. 3, pp. 261-271, Mar. 2001.
    [20] S. M. Jamal, D. Fu, N. C.-J. Chang, P. J. Hurst, and S. H. Lewis, “A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1618-91627, Dec. 2002.
    [21] J. P. Keane, P. J. Hurst, and S. H. Lewis, “Digital background calibration for memory effects in pipelined analog-to-digital converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 3, pp. 511-525, Mar. 2006.
    [22] S.-T. Ryu, B.-S. Song, and K. Bacrania, “A 10-bit 50-MS/s pipelined ADC with opamp current reuse,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 475-485, Mar. 2007.
    [23] K. Chandrashekar and B. Bakkaloglu, “A b 50MS/s opamp-sharing pipeline A/D with current-reuse OTAs,” Proc. IEEE Cust. Int. Circuits Conf., Sep. 2009, pp. 263–266.
    [24] M. Y. Kim, J. Kim, T. Lee, and C. Kim, “10-bit 100MS/s CMOS pipelined A/D converter with 0.59pJ/conversion-step” Proc. IEEE Asia Solid-State Circuits Conf., Nov. 2008, pp. 65–68.
    [25] B. G. Lee and R. M. Tsang, “A 10-bit 50 MS/s pipelined ADC with capacitor-sharing and variable-gm opamp,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 883-890, Mar 2009.
    [26] Y. -C. Huang and T. -C. Lee, “A 10b 100MS/s 4.5mW pipelined ADC with a time sharing technique,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 300-301.
    [27] J. Crols and M. Steyaert, “Switched-opamp: an approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, no. 3, pp. 936-842, Aug. 1994.
    [28] M. Waltari and K. A. I. Halonen, “1-V 9-bit pipelined switched-opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 129-134, Jan. 2001.
    [29] H. -C. Kim, D. -K Jeong, and W. Kim, “A partially switched-opamp technique for high-speed low-power pipelined analog-to-digital converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 4, pp. 795-801, Apr. 2006.
    [30] P. Y. Wu, V. S. -L. Cheung, and H. C. Luong, “A 1-v 100-MS/s 8-bit CMOS switched-opamp pipelined ADC using loading-free architecture,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 730-738, Apr. 2007.
    [31] S. -C Lee, Y. -D Jeon, J. -K Kwon, and J. Kim, “A 10-bit 205-MS/s 1.0-mm2 90-nm CMOS pipeline ADC for flat panel display applications,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2688-2695, Dec. 2007.
    [32] Y. J. Kim, H. C. Choi, K. H. Lee, G. C. Ahn, S. H. Lee, J. H. Kim, K. J. Moon, M. Choi, K. H. Moon, H. J. Park, and B. H. Park, “A 9.43-ENOB 160MS/s 1.2V 65nm CMOS ADC based on multi-stage amplifiers,” Proc. IEEE Cust. Int. Circuits Conf., Sep. 2009, pp. 571–574.
    [33] K. Honda, M. Furuta, and S. Kawahito, “A low-power low-voltage 10-bit 100-MSample/s pipeline A/D converter using capacitance coupling techniques,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 2757-765, Apr. 2007.
    [34] Y. -J. Kim, H. -C. Choi, G. -C. Ahn, and S. -H. Lee, “A 12 bit 50 MS/s CMOS Nyquist A/D converter with a fully differential class-AB switched op-amp,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 620-628, Mar. 2010.
    [35] T. Ueno, T. Ito, D. Kurose, T. Yamaji and T. Itakura, “A 1.2 V 24 mW/ch, 10-bit, 80 MSample/s pipelined A/D converters,” Proc. IEEE Cust. Int. Circuits Conf., Sep. 2006, pp. 501–504.
    [36] S. Kawahito, K. Honda, Z. Liu, K. Yasutomi, and S. Itoh, “A 15b power-efficient pipeline A/D converter using non-slewing closed-loop amplifiers,” Proc. IEEE Cust. Int. Circuits Conf., Sep. 2008, pp. 117–120.
    [37] Y. Chiu, P. R. Gray, and B. Nikolic, “A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 2139-2151, Dec. 2004.
    [38] A. Varzaghani and C.-K K. Yang, “A 600-MS/s 5-bit pipeline A/D converter using digital reference calibration,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 310-319, Feb. 2006.
    [39] G. Ahn, P. K. Hanumolu, M. Kim, S. Takeuchi, T. Sugimoto, K. Hamashita, K. Takasuka, G. Temes, and U. Moon, “A 12b 10MS/s pipelined ADC using reference scaling,” Symp. VLSI circuits Dig. Tech. Papers, Jun. 2006, pp. 222-223.
    [40] M. G. Kim, V. Kratyuk, P. K. Hanumolu, G. -C. Ahn, S. Kwon, and U. -K. Moon, “An 8mW 10b 50MS/s pipelined ADC using 25dB opamp,” Proc. IEEE Asia Solid-State Circuits Conf., Nov. 2008, pp. 49–52.
    [41] D.-L. Shen and T. C. Lee, “A 6-bit 800-MS/s pipelined A/D converter with open-loop amplifiers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 258-268, Feb. 2007.
    [42] K. Nagaraj, T. R. Viswanathan, K. Singhal, and J. Vlach, “Switched-capacitor circuits with reduced sensitivity to amplifier gain,” IEEE Trans. Circuits Syst., vol. CAS-34, no. 5, pp. 571-574, May 1987.
    [43] J. Li and U. K. Moon, “A 1.8V 67mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1468-1476, Sep. 2004.
    [44] Y. J. Kook, J. Li, B. Lee, and U. K. Moon, “Low-power and high-speed pipelined ADC using time-aligned CDS technique,” Proc. of IEEE Cust. Int. Circuits Conf., Sep. 2007, pp. 321–324.
    [45] J.-F. Lin and S.-J. Chang, “A high-speed pipelined analog-to-digital converter using modified time-shifted correlated double sampling technique,” in Proc. 2006 Int. Symp. Circuits and Syst., May 2006, pp. 5367-5370.
    [46] J.-F. Lin, S.-J. Chang, C.-C. Liu, and C.-H. Huang, “A 10-bit, 60-MS/s low-power pipelined ADC with split-capacitor CDS technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 163-167, Mar. 2010.
    [47] J.-F. Lin and S.-J. Chang, “A low-power mixed-architecture ADC with time-interleaved correlated double sampling technique and power-efficient back-end stages,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., to be submitted.
    [48] B. R. Gregoire and U. K. Moon, “An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2620-2630, Dec. 2008.
    [49] M. Daito, H. Matsui, M. Ueda, and K. Iizuka, “A 14-bit 20-MS/s pipelined ADC with digital distortion calibration,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2417-2423, Nov. 2006.
    [50] A. Panigada and I. Galton, “Digital background correction of harmonic distortion in pipelined ADCs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 9, pp. 1885-1895, Sep. 2006.
    [51] E. Iroaga and B. Murmann, “A 12-bit 75-MS/s pipelined ADC using incomplete settling,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 748-756, Apr. 2007.
    [52] A. Verma and B. Razavi, “A 10-bit 500-MS/s 55-mW CMOS ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3039-3050, Nov. 2009.
    [53] A. Panigada and I. Galton, “A 130 mW 100 MS/s pipelined ADC with 69 dB SNDR enabled by digital harmonic distortion correction,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3314-3328, Dec. 2009.
    [54] J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini, and H.-S. Lee, “Comparator-based switched-capacitor circuits for scaled CMOS technologies,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658-2668, Dec. 2006.
    [55] L. Brooks and H.-S. Lee, “A zero-crossing-based 8-bit 200MS/s pipelined ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2677-2687, Dec. 2007.
    [56] L. Brooks and H.-S. Lee, “A 12b, 50 MS/s, fully differential zero-crossing based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3329-3343, Dec. 2009.
    [57] B. P. Hershberg, S. T. Weaver, and U. -K. Moon, “A 1.4V signal swing hybrid CLS-opamp/ZCBC pipelined ADC using a 300mW output swing opamp,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 302-303.
    [58] J. Hu and B. Murmann, “A 9.4-bit, 50-MS/s, 1.44-mW pipelined ADC using dynamic source follower residue amplification,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1057-1066, Apr. 2009.
    [59] I. Ahmed, J. Mulder, and D. A. Johns, “A 50MS/s 9.9 mW pipelined ADC with 58 dB SNDR in 0.18m CMOS using capacitive charge-pumps,” ISSCC Dig. Tech. Papers, Feb. 2009, pp. 164-165.
    [60] M. Anthony, E. Kohler, J. Kurtze, L. Kushner, and G. Sollner, “A process-scalable low-power charge-domain 13-bit pipeline ADC,” Symp. VLSI circuits Dig. Tech. Papers, Jun. 2008, pp. 222-223.
    [61] M. Yoshioka, M. Kudo, K. Gotho, and Y. Watanabe, “A 10 b 125 MS/s 40 mW pipelined ADC in 0.18 m CMOS,” ISSCC Dig. Tech. Papers, Feb. 2005, pp. 282-283.
    [62] K. Honda, Z. Liu, M. Furuta, and S. Kawahito, “A 14b low-power pipeline A/D converter using a pre-charging technique,” Symp. VLSI circuits Dig. Tech. Papers, Jun. 2007, pp. 196-197.
    [63] D. Y. Chang, “Design techniques for a pipelined ADC without using a front-end sample-and-hold amplifier,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 11, pp. 2123-2132, Nov. 2004.
    [64] K. Gulati, M. S. Peng, A. Pulincherry, C. E. Munoz, M. Lugin, A. R. Bugeja, J. Li, and A. P. Chandrakasan, “A highly integrated CMOS analog baseband transceiver with 180 MSPS 13-bit pipelined CMOS ADC and dual 12-bit DACs,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1856-1866, Aug. 2006.
    [65] H. Wang, X. Wang, P. J. Hurst, and S. H. Lewis, “Nested digital background calibration of a 12-bit pipelined ADC without an input SHA,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2780-2789, Oct. 2009.
    [66] P. Huang and Y. Chiu, “Calibration of sampling clock skew in SHA-less pipeline ADCs,” Electronics Letters, vol. 44, issue 18, pp. 1061-1062, Aug. 2008.
    [67] J. Li, X. Zeng, L. Xie, J. Chen, J. Zhang, and Y. Guo, “A 1.8-V 22-mW 10-bit 30-MS/s pipelined CMOS ADC for low-power subsampling applications,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 321-329, Feb. 2008.
    [68] I. Ahmed and D. A. Johns, “A highly bandwidth power scalable sub-sampling 10-bit pipelined ADC with embedded sample and hold,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1638-1647, Jul. 2008.
    [69] A. Krymski and K. Tajima, “CMOS image sensor with integrated 4 Gb/s camera link transmitter,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 504-505.
    [70] I. Takayanagi, M. Shirakawa, K. Mitani, M. Sugawara, S. Iversen, J. Moholt, J. Nakamura, and E. R. Fossum, “A 1.25-inch 60-frames/s 8.3Mpixel digital- output CMOS image sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2305–2314, Nov. 2005.
    [71] M. Furuta, Y. Nishikawa, T. Inoue, and S. Kawahito, “A high-speed, high-sensitivity digital CMOS image sensor with a global shutter and 12-bit column-parallel cyclic A/D converters,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 766–774, Apr. 2007.
    [72] J. Bouvier, M. Dahoumane, D. Dzahini, J. Y. Hostachy, E. Lagorio, O. Rossetto, H. Ghazlane, and D. Dallet, “A low power and low signal 5-bit 25 MS/s pipelined ADC for monolithic active pixel sensors,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1195-1200, Aug. 2007.
    [73] J.-F. Lin, S.-J. Chang, C.-F. Chiu, H.-H. Tsai, and J.-J. Wang, “Low-power and wide-bandwidth cyclic ADC with capacitor and opamp reuse techniques for CMOS Image sensor application,” IEEE Sensors J., vol. 9, no. 12, pp. 2044–2054, Dec. 2009.
    [74] IEEE Std 1241-2000, IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters.
    [75] T. M. Souders and G. N. Stenbakken, “A comprehensive approach for modeling and testing analog and mixed-signal devices,” in IEEE Int. Test Conf., Washington, DC, Sept. 1990, pp. 169-176.
    [76] G. N. Stenbakken and T. M. Souders, “Linear error modeling of analog and mixed-signal devices,” in IEEE Int. Test Conf., Nashville, TN, Oct. 1991, pp. 573-581.
    [77] P. Capofreddi and B. Wooley, “The use of linear models in A/D converter testing,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 44, pp. 1105-1113, Dec. 1997.
    [78] C. Wegener and M. Peter Kennedy, “Linear model-based testing of ADC nonlinearities,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, pp. 213-217, Jan. 2004.
    [79] Z. Yu, D. Chen, and R. Geiger, “Pipeline ADC linearity testing with dramatically reduced data capture time,” IEEE International Symposium on Circuits and Systems, vol.1 1999, pp. 792–795.
    [80] S. Goyal and A. Chatterjee, “Linearity testing of A/D converters using selective code measurement,” Journal of Electronic Testing, pp. 567–576, 2008.
    [81] H. Xing, D. Chen, R. Geiger, and L. Jin, “System identification-based reduced-code testing for pipeline ADCs’ linearity test,” IEEE International Symposium on Circuits and Systems, 2008, pp. 2402–2405.
    [82] J.-F. Lin, T.-C. Kung, and S.-J. Chang, “A reduced code linearity test method for pipelined A/D converters,” in Proc. IEEE Asian Test Symposium, Nov 24-27, 2008, pp. 111–116.
    [83] J.-F. Lin, S.-J. Chang, and C.-H. Huang, “Design-for-test circuit for the reduced code based linearity test method in pipelined ADCs with digital error correction technique,” in Proc. IEEE Asian Test Symposium, Nov 24-27, 2009, pp. 57–62.
    [84] J.-F. Lin, S.-J. Chang, T.-C. Kung, and C.-H. Huang, “Transition-code based linearity test method for pipelined ADCs with digital error correction,” IEEE Trans. Circuits Syst. I, Reg. Papers, to be submitted.
    [85] A. Charoenrook and M. Soma, “Fault diagnosis of flash ADC using DNL test,” in Proc. IEEE International Test Conference, Oct., 1993, pp. 680–689.
    [86] A. Charoenrook and M. Soma, “Fault diagnosis technique for subranging ADCs,” in Proc. IEEE International Test Conference, Nov., 1994, pp. 367–372.
    [87] T. Kuyel and H. Bilhanhen, “Relating linearity test results to design flaws of pipelined analog to digital converters,” in Proc. IEEE International Test Conference, Sept., 1999, pp. 772–779.
    [88] C. H. Huang, K. J. Lee, and S. J. Chang, “A low-cost diagnosis methodology for pipelined A/D converters,” in Proc. IEEE Asian Test Symposium, Nov, 2004, pp. 296–301.
    [89] E. Peralias, A. Rueda, J. A. Prieto, and J. L. Huertas, “DfT & on-line test of high-performance data converters: a practical case,” in Proc. IEEE International Test Conference, Oct., 1998, pp. 534–540.
    [90] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, pp.1584-1614, Nov. 1996.
    [91] M. Waltari and K. Halonen, “Timing skew insensitive switching for double sampled circuits,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. II, Jun. 1999, pp. 61-64.
    [92] Z. Cao, S. Yan, and Y. Li, “A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13m CMOS,” ISSCC Dig. Tech. Papers, Feb. 2008 pp. 542-543.
    [93] S. W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-m CMOS,” IEEE J. Solid-State Circuits, vol. 41, pp.2669-2680, Dec. 2006.
    [94] J. Craninckx and G. Van der Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm digital CMOS,” ISSCC Dig. Tech. Papers, Feb. 2007, pp. 246-247.
    [95] V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. Van der Plas, and J. Craninckx, “An 820W 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90nm digital CMOS,” ISSCC Dig. Tech. Papers, Feb. 2008 pp. 238-239.
    [96] D. W. Cline and P. R. Gray, “A power optimized 13-b 5-Msamples/s pipelined analog-to-digital converter in 1.2-m CMOS,” IEEE J. Solid-State Circuits, vol. 34, pp. 294-303, Mar. 1996.
    [97] B. Razavi and B. A. Wooley, “Design techniques for high-speed, high-resolution comparators,” IEEE J. Solid-State Circuits, vol. 27, pp. 1916-1626, Dec. 1992.
    [98] J. Doernberg, H. S. Lee, and D. A. Hodges, “Full-speed testing of A/D converters,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 820–827, Dec. 1984.
    [99] J. B. Park and et al., “A 10-b 150Msample/s 1.8-V 123mW CMOS A/D converter with 400-MHz input bandwidth,” IEEE J. of Solid-State Circuits, vol. 39, pp. 1335-1337, Aug. 2004.
    [100] B. Hernes, J. Bjørnsen, T. N. Andersen, A. Vinje, H. Korsvoll, F. Telstø, A. Briskemyr, C. Holdø, and Ø. Moldsvor, “A 92.5mW 205MS/s 10b pipeline IF ADC implemented in 1.2V/3.3V 0.13m CMOS,” ISSCC Dig. Tech. Papers, Feb. 2007, pp. 462-463.
    [101] B. Hernes and et al., “A 1.2V 220MS/s 10b pipeline ADC implemented in 0.13 m digital CMOS,” ISSCC Dig. Tech. Papers, Feb. 2004, pp. 256-526.
    [102] Y. J. Kim, H. C. Choi, S. W. Yoo, S. H. Lee, D. Y. Chung, K. H. Moon, H. J. Park, and J. W. Kim, “A re-configurable 0.5V to 1.2V, 10MS/s to 100MS/s, low-power 10b 0.13m CMOS pipeline ADC,” in Proc. IEEE Cust. Int. Circuits Conf., Sep. 2007, pp. 185–188.
    [103] O. Stroeble, V. Dias, and C. Schwoerer, “An 80MHz 10b pipeline ADC with dynamic range doubling and dynamic reference selection,” ISSCC Dig. Tech. Papers, Feb. 2004, pp. 462–539.
    [104] T. Musah, B. R. Gregoire, E. Naviasky, and U. K. Moon, “Parallel correlated double sampling technique for pipelined analogue-to-digital converters,” Electronics Letters, 2007, 43, (23), pp. 1260-1261.
    [105] T. Musah and U. K. Moon, “Correlated level shifting technique with cross-coupled gain enhancement capacitors,” Electronics Letters, 2009, 45, (13), pp. 672-674.
    [106] O. Choksi and L. R. Carley, “Analysis of switched-capacitor common-mode feedback circuit,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 50, no. 12, pp. 1583-1595, Dec. 2003.
    [107] B. Min and et al., “A 69-mW 10-bit 80-Msample/s pipelined CMOS ADC,” IEEE J. of Solid-State Circuits, vol. 38, pp. 2031-2039, Dec. 2003.
    [108] M. F. Snoeij, P. Donegan, A. J. P. Theuwissen, K. A. A. Makinwa, and J.H. Huijsing, “Multiple-ramp column-parallel ADC architectures for CMOS image sensors,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2968–2976, Dec. 2007.
    [109] S. Lim, J. Lee, D. Kim, and G. Han, “A high-speed CMOS image sensor with column-parallel two-step single slope ADCs,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp.393-398, Mar. 2009.
    [110] A. N. Karanicolas, H. S. Lee, and K. L. Barcrania, “A 15-b 1-Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1207 - 1215, Dec. 1993.
    [111] Y. S. Shu and B. S. Song, “A 15-bit linear 20-MS/s pipelined ADC digitally calibrated with signal-dependent dithering,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 342 - 350, Feb. 2008.
    [112] W. Kester, “The data conversion handbook,” Newness, 2005, pp. 312-316.
    [113] B. Provost and E. S. Sinencio, “A practical self-calibration scheme implementation for pipeline ADC,” IEEE Trans. Instrum. Meas. vol. 53, no. 2, pp. 448-456, Apr. 2004.
    [114] W. Liu, P. Huang, and Y. Chiu, “A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS ADC achieving over 90dB SFDR,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 380–381.
    [115] C.-C Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 386–387.
    [116] P. N. Singh, A. Kumar, C. Debnath, and R. Malik, “A 1.2V 11b 100MSPS 15mW ADC realized using 2.5b pipelined stage followed by time interleaved SAR in 65nm digital CMOS process,” Proc. IEEE Cust. Int. Circuits Conf., Sep. 2008, pp. 305–308.
    [117] M. Furuta, M. Nozawa, and T. Itakura, “A 0.06mm2 8.9b ENOB 40MS/s pipelined SAR ADC in 65nm CMOS,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 382-383.
    [118] S. M. Louwsma, A. J. M. Tuijl, M. Vertregt, and B. Nauta, “A 1.35 GS/s, 10b, 175 mW time-interleaved AD converter in 0.13m CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 778-786, Apr. 2008.
    [119] M. Waltari and K. Halonen, “Timing skew insensitive switching for double sampled circuits,” in Proc. IEEE Int. Symp. Circuits and Sys., vol. II, Jun. 1999, pp. 61-64.
    [120] L. Jin, K. Parthasarathy, T. Kuyel, D. Chen, and J. Kostamovaara, “A robust algorithm to identify the test stimulus in histogram-based A/D converter testing,” IEEE Trans. Instrum. Meas., vol. 54, no. 3, pp. 1188-1199, Jun. 2005.
    [121] H. Jiang, B. Olleta, D. Chen, and R. L. Geiger, “Testing high resolution ADCs with low resolution/accuracy deterministic dynamic element matched DACs,” in IEEE Int. Test Conf., Nashville, TN, Oct. 2004, pp. 1379-1388.
    [122] H. Xing, H. Jiang, D. Chen, and R. L. Geiger, “A fully digital-compatible BIST strategy for ADC linearity testing,” in IEEE Int. Test Conf., Nashville, TN, Oct. 2007, pp. 1-10.
    [123] J.-F. Lin, S.-J. Chang, and C.-H. Huang, “Digital design-for-diagnosis method for error identification of pipelined ADCs,” IEEE Trans. Circuits Syst. I, Reg. Papers, to be submitted.

    下載圖示 校內:2011-08-16公開
    校外:立即公開
    QR CODE