簡易檢索 / 詳目顯示

研究生: 詹富偉
Cham, Fook-Haw
論文名稱: 規則波與浮式結構的交互作用研究
A 3D EXPERIMENTAL AND NUMERICAL STUDY ON REGULAR WAVE INTERACTION WITH FREELY FLOATING BODY
指導教授: 蕭士俊
Hsiao, Shih-Chun
共同指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 81
中文關鍵詞: 規則波浮式結構交互作用光滑粒子流體動力學DualSPHysics
外文關鍵詞: regular wave, floating body, fluid body interaction, Smoothed Particle Hydrodynamics, DualSPHysics
相關次數: 點閱:141下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討規則波與浮式結構物的互制問題,並藉由實驗和模擬的方式來觀察浮體在波浪的作用下發生的六個自由度(6DoF)的受力運動行為。此次實驗於成功大學台南水工試驗所的風波流平面水槽(27m×19m×1m)中進行。結構物模型均為壓克力製的中空立方體和中空圓柱體。在平面水槽中進行的實驗,克服了通常只能斷面水槽觀察浮體二維運動的實驗侷限性,並且在初始以不同入射角的波浪條件進行,分別為0°、15°、30°和45°,設計的波浪週期為0.8s至2.5s。
    另外,數值方式則是使用一種以光滑粒子流體動力學(SPH)方法的開源碼數值軟體(名為DualSPHysics)進行模擬。DualSPHysics開源碼碼能夠在C ++中編譯並且利用GPU運行,其藉由GPU的加速運算能力有利於模擬需要大量粒子操作的三維波浪與浮式結構的互制問題 。動態邊界粒子(DBP)為DualSPHysics_v4.0唯一預設的處理流體與固體邊界的方法,其特點為編碼與計算過程簡單快速且適用於各種形狀的邊界;而本文亦使用(Ren et al.,2015)的數值與實驗結果做浮式結構物與波浪互製作用的運動比較,以確保該模式在二維計算能夠提供準確並且穩定的結果。
    最後,將此模式的三維數值結果與本文的實驗數據進行比較,以確保此模式即使是在更複雜,更貼近實際問題的三維情況下針對波浪與浮式結構物的互制問題進行模擬時,亦能為夠提供相當可靠的數據。

    This thesis presents a study on the wave hydrodynamic interaction with floating structures under regular waves. With the use of combined IMU and LED motion tracking technique, a comprehensive behavior of floating structure focusing on the six-degree of freedom(6DoF) motions and forces exerted by regular waves is successfully investigated in the experiment. The experiment was conducted in a wave basin (27m x 19m x 1m) at National Cheng Kung University, Tainan Hydraulics Laboratory(THL). The models are a box and a cylinder, both in the scale of 1:50. Getting rid of the limitation of the experiment conducted in wave flume which normally can only investigate two-dimensional motion, the tests were carried out under the wave conditions of different incident angle, which are 0⁰, 15⁰, 30⁰ and 45⁰ in the basin, with different wave frequency in the range of 0.8s to 2.5s.

    Next, the numerical simulations using the Smoothed Particle Hydrodynamic (SPH) method were conducted with an open-source code software, named DualSPHysics to make a data comparison between numerical and experimental results. DualSPHysics code, which can be compiled in C++ and run in in GPU, is an accelerated SPH simulation tool and suitable for the case of wave interaction with floating structures, especially in three dimensions, which needs a large number of particles (resources and time). The dynamic boundary particles (DBP) is used for the fluid-solid boundary treatment in this model due to the feature of simple, time-saving calculating process in code and adapt to the arbitrary geometry of structure boundary. In this paper, the numerical and experimental results of (Ren et al.,2015) are used to compare the motion of the floating structure with the wave interaction in order to ensure that the model can provide accurate and stable results in the two-dimensional calculation.

    Lastly, the numerical results in three dimensions are compared with the experimental data in order to ensure that the present model can provide reliable data for more complex and realistic application on the related case.

    ABSTRACT I 摘 要 III TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX LIST OF SYMBOLS XII 1 INTRODUCTION 1 1.1 Research Background and Motivation 1 1.2 Literature review 2 1.3 Overview of the study 4 2 MATERIALS AND METHODOLOGY 5 2.1 Experiment 5 2.1.1 Floating structure model 5 2.1.2 Wave basin setup 7 2.1.3 Measurement apparatus 8 2.1.4 Inertial Measurement Unit (IMU) sensor 9 2.1.5 LED motion tracking system 11 2.1.6 Data analysis –IMU sensor 12 2.1.7 Data analysis –LED motion tracking system 14 2.1.8 Data analysis –coordinating system 17 2.2 Numerical model 19 2.2.1 Governing equations for fluid 21 2.2.2 Smoothing kernel function 21 2.2.3 Equation of state 22 2.2.4 Artificial viscosity 22 2.2.5 Delta-SPH 23 2.2.6 Time stepping- symplectic scheme 23 2.2.7 Dynamic boundary conditions 24 2.2.8 Floating body motion equations 25 3 EXPERIMENT RESULTS & DISCUSSION 27 3.1 Experiment parameters 27 3.2 Free decay test 30 3.3 Motion response 33 3.3.1 Pitch and roll (BFT0) 34 3.3.2 Yaw (BFT0) 37 3.3.3 Heave (BFT0) 41 3.3.4 Surge (Global-X) 43 3.3.5 Sway (Global-Y) 46 3.4 Wave load (BFT0) 48 3.5 Drift (Global-X) 54 4 NUMERICAL WAVE GENERATION 59 4.1 Wave Condition 59 4.1.1 Piston motion (2nd Stokes wave) 60 4.2 Numerical wave tank setup 61 4.2.1 Sponge zone 62 4.2.2 Result and Discussion 63 5 WAVE-BODY INTERACTION 64 5.1 Two-dimensional case 64 5.1.1 Test case comparison 65 5.1.2 Results and discussion 69 5.2 Three-dimensional case 72 6 CONCLUSION 76 7 REFERENCE 78 APPENDIX 80 Derivation of Stokes Drift 80

    1. Altomare, C., Suzuki, T., Domínguez, J.M., Barreiro, A., Crespo, A.J.C., and Gómez-Gesteira, M. (2015). Numerical wave dynamics using Lagrangian approach: wave generation and passive & active wave absorption. Conference: Proceedings of the 10th SPHERIC International Workshop, Parma, Italy.
    2. Bouscasse, B., Colagrossi, A., Marrone, S. and Antuono, M. (2013). Nonlinear water wave interaction with floating bodies in SPH. Journal of Fluids and Structures, 42, pp.112-129.
    3. Crespo, A.J.C., Domínguez, J.M., Rogers, B.D., Gómez-Gesteira, M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A., García-Feal, O. 2015. DualSPHysics: open-source parallel CFD solver on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 187, pp 204-216.
    4. Crespo, A.J.C., Gómez-Gesteira, M. and Dalrymple, R. A. (2007). Boundary conditions generated by dynamic particles in SPH methods. Computers, Materials and Continua, 5, pp.173-184.
    5. Domínguez, J.M., Crespo, A.J.C., Cercós-Pita, J.L. et al. (2015). Evaluation of reliability and efficiency of different boundary conditions in an SPH code. Conference: Proceedings of the 10th SPHERIC International Workshop, Parma, Italy.
    6. Faltinsen, O.M. (1990). Sea Loads on Ships and Offshore Structures. Cambridge; New York: Cambridge University Press.
    7. Gingold, R. and Monaghan, J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), pp.375-389.
    8. Han, S. (2010). Measuring displacement signal with an accelerometer. Journal of Mechanical Science and Technology, 24(6), pp.1329-1335.
    9. Harms, V. (1987). Steady Wave‐Drift of Modeled Ice Floes. Journal of Waterway, Port, Coastal, and Ocean Engineering, 113(6), pp.606-622.
    10. Hsu, W.Y., Hwung, H.H., Yang, R.Y., Liu, C.M. (2012). Interfacial wave motion caused by wave-mud interaction. Journal of Visualization, 15(3), pp.215–224.
    11. Huang, G. and Law, A.W.K. (2013). Wave-Induced Drift of Large Floating Objects in Regular Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(6), pp.535-542.
    12. Huang, G., Law, A.W.K., Huang, Z. (2011). Wave-induced drift of small floating objects in regular waves. Ocean Engineering, 38(4), pp.712-718.
    13. Leimkuhler, B.J., Reich, S., Skeel, R.D. (1996). Integration Methods for Molecular dynamic. IMA Volume in Mathematics and its application, 82, pp.161-186.
    14. Lin, C.Y. and Huang, C.J. (2004). Decomposition of incident and reflected higher harmonic waves using four wave gauges. Coastal Engineering, 51(5-6), pp.395-406.
    15. Lin, P. and Liu, P. (2004). Discussion of “Vertical variation of the flow across the surf zone” [Coast. Eng. 45 (2002) 169–198]. Coastal Engineering, 50(3), pp.161-164.
    16. Lucy, L. (1977). A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82, p.1013.
    17. Madsen, O.S. (1971). On the generation of long waves. Journal of Geophysical Research, 76(36), pp.8672-8683.
    18. Marchenko, A. (1999). The floating behaviour of a small body acted upon by a surface wave. Journal of Applied Mathematics and Mechanics, 63(3), pp.471-478.
    19. Maruo, H. (1960). The Drift of a Body Floating on Waves. Journal of Ship Research, 4, pp.1-10.
    20. Molteni, D. and Colagrossi, A. (2009). A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Computer Physics Communications, 180(6), pp.861-872.
    21. Monaghan, J. and Kos, A. (1999). Solitary Waves on a Cretan Beach. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(3), pp.145-155.
    22. Monaghan, JJ. (1994). Simulating Free Surface Flows with SPH. Journal of Computational Physics, 110(2), pp.399-406.
    23. Monaghan, JJ. (2005). Smoothed Particle Hydrodynamics. Reports on Progress in Physics, 68, pp.1703-1759.
    24. Morison, J.R., Johnson, J.W. and Schaaf, S.A. (1950). The Force Exerted by Surface Waves on Piles. Journal of Petroleum Technology, 2(05), pp.149-154.
    25. Newman, J.N. (1965). The exciting forces on moving bodies in waves. Journal of Ship Research, 9(3), pp.190-199.
    26. Newman, J.N. (1967). The Drift Force and Moment on Ships in Waves. Journal of Ship Research, 11(1), pp.51-60.
    27. Oger, G., Doring, M., Alessandrini, B. and Ferrant, P. (2006). Two-dimensional SPH simulations of wedge water entries. Journal of Computational Physics, 213(2), pp.803-822.
    28. Omidvar, P., Stansby, P. and Rogers, B. (2011). Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass. International Journal for Numerical Methods in Fluids, 68(6), pp.686-705.
    29. Omidvar, P., Stansby, P.K. and Rogers, B.D. (2012). SPH for 3D floating bodies using variable mass particle distribution. International Journal for Numerical Methods in Fluids, 72(4), pp.427-452.
    30. Ren, B., He, M., Dong, P. and Wen, H. (2015). Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method. Applied Ocean Research, 50, pp.1-12.
    31. Rumer, R. R., Crissman, R., and Wake, A. (1979). “Ice transport in great lakes.” Water Resource and Environmental Engineering Research Rep. No. 79-3, State Univ. of New York, Buffalo, NY.
    32. Shibayama, T. (2009). Coastal processes: concepts in coastal engineering and their applications to multifarious environments, vol.28 World Scientific Publishing, Singapore (Advanced series on Ocean Engineering).
    33. Wadhams, P., Kristensen, M. and Orheim, O. (1983). The response of Antarctic icebergs to ocean waves. Journal of Geophysical Research, 88(C10), pp.6053-6065.
    34. Wei, G. and Kirby, J.T. (1995). Time-Dependent Numerical Code for Extended Boussinesq Equations. Journal of Waterway, Port, Coastal, and Ocean Engineering, 121(5), pp.251-261.
    35. Wendland, H. (1995). Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4(1), pp.389-396.
    36. Zhao, X. and Hu, C. (2012). Numerical and experimental study on a 2-D floating body under extreme wave conditions. Applied Ocean Research, 35, pp.1-13.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE