| 研究生: |
吳孟晏 Wu, Meng-Yen |
|---|---|
| 論文名稱: |
全包覆式閘極電晶體與鰭式電晶體組成6T靜態隨機存取記憶體的效能評估 The Evaluation of 6T-SRAM for GAA MOSFETs and FinFETs at 7 nm and 10 nm Technology Nodes |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 共同指導教授: |
江孟學
Chiang, Meng-Hsueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 全包覆式閘極電晶體 、鰭式電晶體 、靜態隨機存取記憶體 |
| 外文關鍵詞: | Gate-All-Around (GAA) MOSFET, FinFET, SRAM, scale length, SNM, yield estimation |
| 相關次數: | 點閱:89 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體產業的發展,元件的微縮的過程中遭遇了物理上的挑戰,特別是在抑制短通道效應方面,因此在22奈米技術節點以後多閘極電晶體成為了首要的選擇。論文中我們將包覆式閘極電晶體與鰭式電晶體設計成擁有相似的閘極控制能力並加以比較,我們發現包覆式閘極電晶體雖然有較高的驅動電流,但在元件延遲(intrinsic delay)上鰭式電晶體卻擁有較好的表現。
在晶片設計上,靜態隨機存取記憶體佔有較大的體積以及產生較多的漏電,因此其被設計成high density (HD)、low voltage (LV)、high performance (HP)等組態,在此論文中我們模擬了不同元件所組成的不同組態的靜態隨機存取記憶體的寫入與讀取特性並分析其中的差異。
此外我們也模擬了各種靜態隨機存取記憶體可容忍的誤差並推估出其最小操作電壓值,並以由全包覆式閘極電晶體所組成的靜態隨機存取記憶體為例子將其做最佳化設計,成功的藉由擴大傳輸閘部分的電晶體來增加寫入能力以降低最小操作電壓值,然而此最佳化方法卻不適用於鰭式電晶體,雖然在靜態隨機存取記憶體的面積上有所犧牲,但相較於鰭式電晶體,全包覆式閘極電晶體在靜態隨機存取記憶體的設計上有更大的潛力與彈性。
As the semiconductor industry continues to advance, it has encountered many physical limitations, mostly related to short-channel effects (SCEs). Below node 22, the multi-gate structure has become the solution to improve the gate controllability. In this thesis, we benchmark 6T-SRAM of GAA MOSFETs and FinFETs and present the performance of both devices. We find that GAA MOSFETs with stacking technique provide higher drive current (per pitch) than FinFETs do. However the intrinsic delay (CV/ID) property is contrary. Static random access memory (SRAM) occupies a large portion of die size and consumes most of the standby leakages. 6T-SRAM has been designed as different configurations for high density (HD), low voltage (LV) and high performance (HP). Using a calibrated compact model, we can project the SNM and writeability of the 6T-SRAM for both devices in different configurations. And the characteristics of 6T-SRAM for all combination are demonstrated.
The yield estimation is also done by the calibrated macro-model. The yield estimation and the minimum cell operation voltage (Vmin) for all design combinations of SRAM are presented in this work. By adjusting the channel width of the pass-gate devices, we optimize the GAA MOSFET SRAM in LV configuration to improve Vmin. However, this method can not be used for FinFETs. Although it suffers from the area penalty, the GAA MOSFETs show the potential for SRAM design.
[1] K. J. Kuhn, “CMOS scaling for the 22 nm node and beyond: Device physics and technology,” Int. Symp. VLSI-TSA, pp. 1–2, 2011.
[2] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon device scaling to the sub-10-nm regime,” Science, vol. 306, no. 5704, pp. 2057–2060, 2004.
[3] L. Geppert, “The amazing vanishing transistor act,” IEEE Spectrum, vol. 39, no. 10, pp. 28–33, 2002.
[4] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C. Weber, P. Yashar, K. Zawadzki, K. Mistry, “A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors, ” Symp. VLSIT, pp. 131–132, 2012.
[5] C.-H. Jan. ; Bhattacharya, U. ; Brain, R. ; Choi, S.-J. ; Curello, G. ; Gupta, G. ; Hafez, W. ; Jang, M. ; Kang, M. ; Komeyli, K. ; Leo, T. ; Nidhi, N. ; Pan, L. ; Park, J. ; Phoa, K. ; Rahman, A. ; Staus, C. ; Tashiro, H. ; Tsai, C. ; Vandervoorn, P. ; Yang, L. ; Yeh, J.-Y. ; Bai, P.,“A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications,” IEDM Tech. Dig, pp. 3.1.1-3.1.4, 2012.
[6] K. J. Kuhn. ; Avci, U. ; Cappellani, A. ; Giles, M.D. ; Haverty, M. ; Seiyon Kim ; Kotlyar, R. ; Manipatruni, S. ; Nikonov, D. ; Pawashe, C. ; Radosavljevic, M. ; Rios, R. ; Shankar, S. ; Vedula, R. ; Chau, R. ; Young, I., “The ultimate CMOS device and beyond,” IEDM Tech. Dig. pp. 8.1.1-8.1.4, 2012.
[7] T. Ernst. ; Dupré, C. ; Isheden, C. ; Bernard, E. ; Ritzenthaler, R. ; Maffini-Alvaro, V. ; Barbe, J.C. ; De Crecy, F. ; Toffoli, A. ; Vizioz, C. ; Borel, S. ; Andrieu, F. ; Delaye, V. ; Lafond, D. ; Rabille, G. ; Hartmann, J.M. ; Rivoire, M. ; Guillaumot, B. ; Suhm, A. ; Rivallin, P. ; Faynot, O. ; Ghibaudo, G. ; Deleonibus, S., “Novel 3D integration process for highly scalable Nano-Beam stacked-channels GAA (NBG) FinFETs with HfO2/TiN gate stack,” IEDM Tech. Dig., pp. 1-4, 2006.
[8] J. J. Gu. ; Wang, X.W. ; Wu, H. ; Shao, J. ; Neal, A.T. ; Manfra, M.J. ; Gordon, R.G. ; Ye, P.D.., “20–80nm Channel length InGaAs gate-all-around nanowire MOSFETs with EOT=1.2nm and lowest SS=63mV/dec,” IEDM Tech. Dig., pp. 23.7.1-23.7.4, 2012.
[9] J. J. Gu. ; Wang, X.W. ; Shao, J. ; Neal, A.T. ; Manfra, M.J. ; Gordon, R.G. ; Ye, P.D., “III-V gate-all-around nanowire MOSFET process technology: From 3D to 4D,” IEDM Tech. Dig., pp. 27.6.1 - 27.6.4, 2012.
[10] Yi-Bo Liao ; Meng-Hsueh Chiang ; Wei-Chou Hsu ; Damrongplasit, N. ; Tsu-Jae King Liu, “Comparison of 10 nm GAA vs. FinFET 6-T SRAM performance and yield,” Proc. EuroSOI, Tarragona, pp. 1-2, 2014
[11] Sentaurus Device, User Guide, Synopsys Inc. ver. G-2012.06, June 2012.
[12] Yi-Bo Liao ; Meng-Hsueh Chiang ; Damrongplasit, N. ; Liu, T.-J.K. ; Wei-Chou Hsu, “6-T SRAM cell design with gate-all-around silicon nanowire MOSFETs,” Proc. VLSI-TSA Symp., pp. 137-138, 2013.
[13] R. H. Yan, A. Ourmazd, and K. F. Lee, “Scaling the Si MOSFET: from bulk to SOI to bulk,” IEEE Trans. Electron Devices, vol. 39, no. 7,pp. 1704–1710, 1992.
[14] K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFET’s,” IEEE Trans. Electron Devices,vol. 40, no. 12, pp. 2326–2329, 1993.
[15] S. Bangsaruntip, G. M. Cohen, A. Majumdar, and J. W. Sleight, “Universality of short-channel effects in undoped-body silicon nanowire MOSFETs,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 903–905, Sep. 2010.
[16] C. P. Auth and J. D. Plummer, “Scaling theory for cylindrical, fully depleted, surrounding-gate MOSFET’s,” IEEE Electron Device Lett.,vol. 18, no. 2, pp 74–76, 1997.
[17] International Technology Roadmap for Semiconductors, 2013 [Online]. Available: http://public.itrs.org.
[18] A. E. Carlson, “Device and circuit techniques for reducing variation in nanoscale
SRAM,” Ph. D. dissertation, Dept. EECS Univ. California Berkeley, Berkeley, CA, pp.
21-61, 2008.Device and circuit techniques for reducing variation in nanoscale SRAM
[19] E. Seevinck, F. J. List, J. Lohstroh, “Static-Noise Margin Analysis of MOS SRAM Cells,” IEEE Journal of Solid-State Circuits, vol. 22, no. 5, pp 748 – 754, 1987.
[20] Qiang Chen, Sriram Balasubramanian, Ciby Thuruthiyil, Mayank Gupta, Vineet Wason,
Niraj Subba, Jung-Suk Goo, Priyanka Chiney, Srinath Krishnan, and Ali B. Icel, “Critical Current (I CRIT) Based SPICE Model Extraction for SRAM Cell,” ICSICT, pp. 448–451, 2008.
[21] Yen-Huei Chen, Wei-Min Chan, Wei-Cheng Wu, Hung-Jen Liao, Kuo-Hua Pan, Jhon-Jhy Liaw, Tang-Hsuan Chung, Quincy Li, Chih-Yung Lin, Mu-Chi Chiang, Shien-Yang Wu, Jonathan Chang, “A 16nm 128Mb SRAM in High-κ Metal-Gate FinFET Technology with Write-Assist Circuitry for Low-VMIN Applications,” IEEE Solid-State Circuits, vol.50, no. 1, pp. 170–177, 2014
[22] Taejoong Song, Woojin Rim, Jonghoon Jung, Giyong Yang, Jaeho Park, Sunghyun Park, Yongho Kim, Kang-Hyun Baek, Sanghoon Baek, Sang-Kyu Oh, Jinsuk Jung, Sungbong Kim, Gyuhong Kim, Jintae Kim, Youngkeun Lee, Sang-Pil Sim, Jong Shik Yoon, Kyu-Myung Choi, Hyosig Won, Jaehong Park, “A 14 nm FinFET 128 Mb SRAM With VMIN Enhancement Techniques for Low-Power Applications,” IEEE Solid-State Circuits, vol.50, no. 1, pp. 158–169, 2014
[23] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, K. Zhang, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size,” IEDM, pp. 3.7.1-3.7.3, 2014.
[24] C. Shin, “Advanced MOSFET designs and implications for SRAM scaling,” Ph. D. dissertation, Dep. EECS Univ. California Berkeley, Berkeley, CA, pp. 23-37, 2011.
[25] B. H. Calhoun, A. P. Chandrakasan, “Static noise margin variation for sub-threshold SRAM in 65-nm CMOS,” IEEE SSC, vol. 41, no.7, pp. 1673-1679, 2006.