| 研究生: |
黃貴晟 Huang, Kuei-Cheng |
|---|---|
| 論文名稱: |
泥體構造與活動斷層交互作用下之地表變形與工程規劃之應用—以臺灣西南部基礎設施規劃為例 Surface Deformation Induced by Active Faults and Mobile Shale:Implications for Infrastructure Planning in Southwestern Taiwan |
| 指導教授: |
景國恩
Ching, Kuo-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 186 |
| 中文關鍵詞: | 地表變形 、泥體構造 、GNSS 、精密水準測量 、InSAR 、龍船斷層 |
| 外文關鍵詞: | Crustal deformation, Mobile shale, GNSS, Precise leveling, InSAR, Lungchuan Fault |
| 相關次數: | 點閱:6 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣西南部位處板塊聚合前緣,地質構造複雜且活動頻繁,活動斷層與泥體構造廣泛分布,對基礎設施規劃與長期穩定性構成高度風險。中寮隧道沿線所觀測到的快速地表變形,突顯出釐清區域變形機制之急迫性,特別對於省道台86線東延工程路線之規劃具有重要意義。為精確掌握龍船地區地表變形分布與特性,本研究整合多元地表監測資料,包括經濟部地質調查及礦業管理中心提供之精密水準測量資料、自地礦中心、中央氣象署與國土測繪中心所蒐集之GNSS連續站與移動站觀測結果,以及經由小基線集(SBAS)技術處理之ALOS-2與Sentinel-1A衛星影像,進行系統性分析。GNSS連續站顯示2016年美濃地震(Mw 6.6)所引發之震後變形持續約兩年;另一方面,水準測量與ALOS-2差分干涉結果亦明確指出,2021年5月至2022年5月期間,龍船斷層(LCNF)周邊出現約20至40 mm之異常抬升。為避免該時段可能存在之非線性變形對結果造成干擾,本研究明確排除震後與異常變形時段,選擇2018年6月至2021年5月作為震間速度估算的代表期間,提升速度場解析之準確性與穩定性。所有速度場皆相對於澎湖白沙S01R連續站進行約制。本研究成果揭示龍船斷層兩側存在顯著的地表變形對比。在垂直方向,斷層西側下盤呈現7.2至14.6 mm/yr的抬升速率,斷層東側上盤則顯示 -2.5至-7.8 mm/yr的沉陷速率,反映出明確的斷層運動。水平方向則向西南運動,速率介於30至40 mm/yr。為提升InSAR視線速度場之可靠度,進一步將ALOS-2與Sentinel-1A影像反演之LOS速度場與GNSS投影結果進行約制。其中,ALOS-2升軌影像於斷層西側顯示較高的LOS速度,跨越LCNF後向東遞減;而Sentinel-1A影像則因山區高植被覆蓋與地形陰影影響,在斷層東側顯示較低的相干性與資料品質。本研究進一步整合GNSS、InSAR與水準測量資料,透過三維速度場反演,以解析地表變形分布。反演結果指出,於2018年至2021年震間期間,龍船斷層展現出右移型潛移特性,斷層西側抬升速率達10.8至13.3 mm/yr,而東側則趨緩至-1.4至1.7 mm/yr的輕微抬升與沉陷。整體三維速度場之速度梯度與龍船斷層之地質構造邊界高度吻合,驗證斷層對地表變形的主控角色。同時,斷層西側局部地區之顯著抬升與已知泥體構造分布相符,推測該區地表變形為活動斷層作用與深部泥體構造交互控制所致。地質調查結果亦進一步佐證此解釋,包括速度梯度與斷層走向一致性,以及泥體構造分布與異常變形區域之空間對應性。本研究透過震後效應排除、觀測資料整合與三維速度場反演,不僅釐清了龍船斷層地區的地表變形模式,也為未來工程路線選擇提供具體量化依據。藉由辨識變形速率較低與應變集中度較低之潛在路徑,可有效降低構造活躍區域之工程風險,進一步提升長期營建安全與基礎設施韌性。
Southwestern Taiwan, situated at the convergent boundary between the Eurasian and Philippine Sea plates, is characterized by complex geological structures and intense tectonic activity. The widespread presence of active faults and mobile shale poses significant challenges to long-term infrastructure stability. Notably, rapid surface deformation observed near the Chungliao Tunnel underscores the urgent need to better understand the regional deformation mechanisms, particularly in light of the planned eastward extension of Provincial Highway 86.To investigate surface deformation in the Lungchuan area, this study integrates multi-source geodetic datasets, including precise leveling data from the Central Geological Survey, continuous and campaign-mode GNSS data provided by the Central Weather Administration and National Land Surveying and Mapping Center, and SBAS-InSAR products derived from ALOS-2 and Sentinel-1A imagery. GNSS time series reveal that the 2016 Mw 6.6 Meinong earthquake induced postseismic deformation lasting up to two years. In addition, leveling and ALOS-2 D-InSAR results indicate an anomalous uplift of approximately 20-40 mm between May 2021 and May 2022 near the Lungchuan Fault(LCNF), which may reflect nontectonic or episodic deformation. To exclude the effects of both postseismic and anomalous signals, the interseismic velocity field was estimated over the period from June 2018 to May 2021. All velocity fields were referenced to the S01R GNSS station located in Baisha, Penghu.The results reveal pronounced deformation gradients across the LCNF. In the vertical direction, uplift rates on the western(footwall) side reach 7.2 to 14.6 mm/yr, while the eastern(hanging wall) side exhibits subsidence of -2.5 to -7.8 mm/yr. Horizontal velocities generally trend southwestward at rates of 30-40 mm/yr. To enhance the reliability of LOS InSAR measurements, LOS velocities from ALOS-2 and Sentinel-1A were constrained using LOS-projected GNSS velocities. ALOS-2 ascending-track results show ~30 mm/yr LOS velocities west of the fault, decreasing to 18 mm/yr eastward across the fault. In contrast, Sentinel-1A data exhibit lower coherence and significant radar shadowing in the vegetated mountainous areas east of the fault, limiting data quality.A three-dimensional velocity inversion incorporating GNSS, InSAR, and leveling data was performed to assess crustal deformation and strain accumulation. The inversion results indicate right-lateral creep along the LCNF during the 2018-2021 interseismic period, with uplift of 10.8-13.3 mm/yr on the western block and a reduced rate of -1.4 to 1.7 mm/yr on the eastern block. The velocity gradients align well with the mapped trace of the LCNF, highlighting its control over surface kinematics. Additionally, localized uplift zones on the western side of the fault spatially correlate with known distributions of mobile shale, suggesting a coupled influence of tectonic creep and ductile shale flow on surface deformation. This interpretation is further supported by geological field observations confirming the alignment between deformation gradients, fault structures, and shale outcrops.By quantifying surface velocity patterns and strain rate distributions, this study provides a robust geodetic framework for infrastructure planning in tectonically active mudstone regions. The identification of low-deformation corridors offers a valuable basis for route optimization and hazard mitigation, ultimately enhancing the safety and resilience of future infrastructure development in southwestern Taiwan.
王奕婷(2024),利用GNSS和ALOS InSAR資料重現台灣西南部快速地表變形。成功大學測量及空間資訊學系學位論文,共126頁。
王雅芳(2019),台灣西南部垂直變形之時空變化。成功大學測量及空間資訊學系學位論文,共97頁。
王鑫, 徐美玲, & 楊建夫(1988). 台灣泥火山地形景觀. 臺灣省立博物館年刊, 31, 31-49.。https://doi.org/10.6548/ATMB.198812_31.0003
石瑞銓、王維豪、李元希(2010)斷層帶地下構造調查研究(4/4),經濟部中央地質調查所99 年度報告,第99-11 號,共132 頁。
交通部公路總局西部濱海公路南區臨時工程處(2023),台86線向東延伸至台3線新闢道路工程綜合規劃及第一階段環境影響評估委託服務工作:斷層調查分析報告書。內部報告。
余輝龍、施輝煌、黃春盛、何智剛、曾寶樹(1990),台南縣龍船及高雄縣坑內、小滾水構造重點地質核查報告。中油內部報告。
吳沂全、陳永隆、吳建一、宣大衛、吳榮章、陳煥彩(1993),龍船地區地層壓力梯度之估算。探採研究彙報,第16 期,第396-411 頁。
林啟文(2013)旗山圖幅及說明書,五萬分之一臺灣地質圖第56 號。經濟部中央地質調查所,共93頁。
林啟文、游鎮源、洪國騰、周稟珊(2012),臺灣南部臺南─高雄泥岩區的地質構造研究。經濟部地質調查及礦業管理中心彙刊,第25號,第143-174頁。
洪怡貞(2017),利用2002-2015年大地測量資料探討台灣西南部現今構造之運動特性,國立成功大學測量及空間資訊學系碩士論文,共94頁。
張李群(2014),以大地測量資料進行龍船斷層與旗山斷層行為分析之研究,成功大學測量及空間資訊學系學位論文,共110頁。
莊惠如(2006),臺灣西南海域泥貫入體分佈與構造活動之關係,國立臺灣大學海洋研究所碩士論文,共113頁。
許書琴(2012),泥貫入體與逆斷層活動在台灣西南部陸域造成之現今地表變形。成功大學測量及空間資訊學系學位論文,共102頁。
郭鶯萍(2017),探討泥岩區對台灣西南部褶皺逆衝帶的高異常變形量之影響,國立臺灣大學地質科學研究所碩士論文,共137頁。
陳文山、松多信尚、石瑞銓、楊志成、游能悌、朱耀國、陳志壕與林啟文(2010)臺灣西部平原區隱伏在全新世沉積層下的新期構造-以小崗山斷層為例。經濟部中央地質調查所特刊,第24 號,第75-91 頁。
陳松春(2013),臺灣西南海域上部高屏斜坡泥貫入體及泥火山之分布及相關海床特徵。國立中央大學地球科學學系博士論文,共116頁。
陳松春、許樹坤、王詠絢、劉家瑄(2014)。臺灣西南海域上部高屏斜坡之泥貫入體與活躍泥火山的分布及油氣潛能。鑛冶:中國鑛冶工程學會會刊,58(2),30-49。https://doi.org/10.30069/MM.201406_58(2).0003。
陳松春、景國恩、羅祐宗、陸挽中(2020)。 臺南背斜及中洲背斜之泥貫入體特徵、活動性及地質安全(經濟部中央地質調查所報告,第33號,頁1-32)。
陳勇昇(2015),藉由大地測量資料探討龍船斷層與旗山斷層之間震變形特性,成功大學測量及空間資訊學系學位論文,共79頁。
陳建良、劉彥求、景國恩、陳國華(2019)利用GPS連續站觀測龍船斷層鄰近地區地表變形情形。經濟部中央地質調查所特刊,第34號,第157-176 頁。
鳥居敬造(1932)臺南州新化油田調查報告及地質圖,比例尺三萬分之一。臺灣總督府殖產局出版第609 號,共29頁。
景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙、莊昀叡(2020)斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估(4/4)期末報告書。經濟部中央地質調查所,共242頁。
景國恩、陳松春、吳泓昱、蔡佩京、蕭詩涵、陳芊如(2023)。臺南台地現今地殼變形機制爭議之初步探討及來自成大資源工程系教學井之暗示。土木水利,50(2),19-22。https://doi.org/10.6653/MoCICHE.202304_50(2).0004
黃旭燦(2003),台灣中南部褶皺逆衝斷層帶地質構造特徵分析,國立中央大學地球物理研究所博士論文,共141頁。
趙荃敏(2016)。利用大地測量及 PSInSAR 技術探討鳳山斷層之運動特性,國立成功大學地球科學系碩士論文,共89頁。
劉彥求(2017)臺灣西南部龍船斷層北段的構造特性研究。經濟部中央地質調查所特刊,第31號,第117-143 頁。
魯曜銓(2023),利用精密水準資料解析現今臺灣西南部泥岩區的垂直地表變形特性。成功大學測量及空間資訊學系學位論文,共201頁。
謝尊堯(2020),利用2016-2019年之大地測量資料探討車瓜林斷層及其西延構造線形之間震變形特性。成功大學測量及空間資訊學系學位論文,共97頁。
Aleem, H., Le Béon, M., Lin, A. T.-S., Ching, K.-E., Soto, J. I., Chen, K.-F., & Nguyen, N.-T. (2025). Structures in the active Western Foothills of Southwestern Taiwan: Fault-related folding versus shale tectonics. Interpretation, 13(2), T327-T346.
Angelier, J., Barrier, E., & Chu, H. T. (1986). Plate collision and paleostress trajectories in a fold-thrust belt: the foothills of Taiwan. Tectonophysics, 125(1-3), 161-178.
Bekaert, D., Hooper, A., & Wright, T. (2015). A spatially variable power law tropospheric correction technique for InSAR data. Journal of Geophysical Research: Solid Earth, 120(2), 1345-1356.
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2003). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375-2383.
Blewitt, G. (2003). Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth. Journal of Geophysical Research: Solid Earth, 108(B2).
Bos, A. G., Spakman, W., & Nyst, M. C. (2003). Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field. Journal of Geophysical Research: Solid Earth, 108(B10).
Brown, D., Ryan, P. D., Byrne, T., Chan, Y.-C., Rau, R.-J., Lu, C.-Y., Lee, Y.-H., & Wang, Y.-J. (2011). The arc–continent collision in Taiwan. Arc-continent collision, 213-245.
Carena, S., Suppe, J., & Kao, H. (2002). Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography. Geology, 30(10), 935-938.
Chang, H., Sung, Q., Chen, C., Chen, L., & Chen, Y. (2005). The relationship between the mud volcano actives and fault movements along the Chishan Fault, southern Taiwan. West Pac Earth Sci, 5, 73-96.
Chen, P. H., Chen, Y. H., Hsieh, M. C., Huang, Y. W., Huang, C. C., Jiang, W. T., Lee, J. J., Lee, Y. C., & Sheu, H. S. (2025). Fault materials and creep characteristics in mudstone areas: A case study of Chegualin Fault in southwestern Taiwan. Engineering Geology, 350, 108020. https://doi.org/10.1016/j.enggeo.2025.108020
Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., Liu, C. S., Lin, H. S., & Lee, Y. W. (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201-214. https://doi.org/10.1016/j.jseaes.2013.10.009
Ching, K.-E., Gourley, J. R., Lee, Y.-H., Hsu, S.-C., Chen, K.-H., & Chen, C.-L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241-251.
Ching, K. E., Johnson, K. M., Rau, R. J., Chuang, R. Y., Kuo, L. C., & Leu, P. L. (2011). Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model. Earth and Planetary Science Letters, 301(1-2), 78-86. https://doi.org/10.1016/j.epsl.2010.10.021
Ching, K. E., Rau, R. J., Johnson, K. M., Lee, J. C., & Hu, J. C. (2011). Present‐day kinematics of active mountain building in Taiwan from GPS observations during 1995–2005. Journal of Geophysical Research: Solid Earth, 116(B9).
Dai, Z., Guo, J., Yu, F., Zhou, Z., Li, J., & Chen, S. (2021). Long-term uplift of high-speed railway subgrade caused by swelling effect of red-bed mudstone: case study in Southwest China. Bulletin of Engineering Geology and the Environment, 80, 4855-4869.
Das, S., Priyadarshana, A., & Grebby, S. (2024). Monitoring the risk of a tailings dam collapse through spectral analysis of satellite InSAR time-series data. Stochastic Environmental Research and Risk Assessment, 38(8), 2911-2926.
Desbrun, M., Meyer, M., Schröder, P., & Barr, A. H. (1999). Implicit fairing of irregular meshes using diffusion and curvature flow. Proceedings of the 26th annual conference on Computer graphics and interactive techniques,
Doo, W. B., Hsu, S. K., Lo, C. L., Chen, S. C., Tsai, C. H., Lin, J. Y., Huang, Y. P., Huang, Y. S., Chiu, S. D., & Ma, Y. F. (2015). Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophysical Journal International, 203(3), 2089-2098. https://doi.org/10.1093/gji/ggv430
Fattahi, H., & Amelung, F. (2014). InSAR uncertainty due to orbital errors. Geophysical Journal International, 199(1), 549-560.
Ferretti, A., Prati, C., & Rocca, F. (2002). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20.
Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191.
Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., & Zhang, K. (2019). PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS solutions, 23, 1-10.
Gourmelen, N., Amelung, F., & Lanari, R. (2010). Interferometric synthetic aperture radar–GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone. Journal of Geophysical Research: Solid Earth, 115(B9).
Graham, L. C. (1974). Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE, 62(6), 763-768.
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7).
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).
Hsieh, S. (1970). Geology and gravity anomalies of the Pingtung plain, Taiwan. Proc. Geol. Soc. China,
Hsieh, S. (1972). Subsurface geology and gravity anomalies of the Tainan and Chungchou structures of the coastal plain of southwestern Taiwan. Petrol. Geol. Taiwan, 10, 323-338.
Hsu, Y. J., Yu, S. B., Kuo, L. C., Tsai, Y. C., & Chen, H. Y. (2011). Coseismic deformation of the 2010 Jiashian, Taiwan earthquake and implications for fault activities in southwestern Taiwan. Tectonophysics, 502(3-4), 328-335. https://doi.org/10.1016/j.tecto.2011.02.005
Huang, H.-H., Yih-Min, W., Ting-Li, L., Wei-An, C., Shyu, J. B. H., Chung-Han, C., & Chang, C.-H. (2011). The preliminary study of the 4 March 2010 Mw 6.3 Jiasian, Taiwan earthquake sequence. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 22(3), 2.
Huang, M.-H., Dreger, D., Bürgmann, R., Yoo, S.-H., & Hashimoto, M. (2013). Joint inversion of seismic and geodetic data for the source of the 2010 March 4, M w 6.3 Jia-Shian, SW Taiwan, earthquake. Geophysical Journal International, 193(3), 1608-1626.
Huang, M. H., Tung, H., Fielding, E. J., Huang, H. H., Liang, C., Huang, C., & Hu, J. C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophysical research letters, 43(14), 7459-7467.
Jolivet, R., Grandin, R., Lasserre, C., Doin, M. P., & Peltzer, G. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical research letters, 38(17).
Kopf, A., & Deyhle, A. (2002). Back to the roots: boron geochemistry of mud volcanoes and its implications for mobilization depth and global B cycling. Chemical Geology, 192(3-4), 195-210.
Kopf, A. J. (2002). Significance of mud volcanism. Reviews of geophysics, 40(2), 2-1-2-52.
Lacombe, O., Mouthereau, F., Angelier, J., & Deffontaines, B. (2001). Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics, 333(1-2), 323-345.
Lacombe, O., Mouthereau, F., Deffontaines, B., Angelier, J., Chu, H. T., & Lee, C. T. (1999). Geometry and Quaternary kinematics of fold-and-thrust units of southwestern Taiwan. Tectonics, 18(6), 1198-1223. https://doi.org/10.1029/1999tc900036
Le Béon, M., Chen, C.-C., Huang, W.-J., Ching, K.-E., Shih, J.-W., Tseng, Y.-C., Chiou, Y.-W., Liu, Y.-C., Hsieh, M.-L., & Pathier, E. (2024). Aseismic deformation within fold-and-thrust belts: example from the Tsengwen River section of southwest Taiwan. Geoscience Letters, 11(1), 57.
Le Béon, M., Huang, M.-H., Suppe, J., Huang, S.-T., Pathier, E., Huang, W.-J., Chen, C.-L., Fruneau, B., Baize, S., & Ching, K.-E. (2017). Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 663-681.
Le Béon, M., Marc, O., Suppe, J., Huang, M. H., Huang, S. T., & Chen, W. S. (2019). Structure and deformation history of the rapidly growing Tainan anticline at the deformation front of the Taiwan mountain belt. Tectonics, 38(9), 3311-3334.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.
Lin, A., & Watts, A. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9), ETG 2-1-ETG 2-19.
Lin, C. C., Lin, A. T. S., Liu, C. S., Horng, C. S., Chen, G. Y., & Wang, Y. S. (2014). Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Research, 35(1), 21-35. https://doi.org/10.1007/s11001-013-9203-7
Lin, G.-P., Chang, W.-L., & Chiu, C.-Y. (2024). Unraveling the role played by a buried mud diapir: Alternative model for 2016 Mw 6.4 MeiNong earthquake in southwestern Taiwan. Geoscience Letters, 11(1), 21.
Liu, C.-S., Huang, I. L., & Teng, L. S. (1997). Structural features off southwestern Taiwan. Marine Geology, 137(3-4), 305-319.
Lo, Y. T., Ching, K. E., Yen, H. Y., & Chen, S. C. (2023). Bouguer gravity anomalies and the three-dimensional density structure of a thick mudstone area: A case study of southwestern Taiwan. Tectonophysics, 848, 229730. https://doi.org/10.1016/j.tecto.2023.229730
Lu, C.-H., Chuang, R. C., Chiang, P.-C., Yen, J.-Y., Ching, K.-E., & Chen, Y.-G. (2025). Detecting infrastructure hazard potential change by SAR techniques on postseismic surface deformation: a case study of 2016 Meinong earthquake in southwestern Taiwan. Engineering Geology, 344, 107827.
Lu, C. H., Ni, C. F., Chang, C. P., Yen, J. Y., & Chuang, R. Y. (2018). Coherence Difference Analysis of Sentinel-1 SAR Interferogram to Identify Earthquake-Induced Disasters in Urban Areas. Remote Sensing, 10(8), 1318. https://doi.org/10.3390/rs10081318
Macchiarulo, V., Milillo, P., Blenkinsopp, C., & Giardina, G. (2022). Monitoring deformations of infrastructure networks: A fully automated GIS integration and analysis of InSAR time-series. Structural Health Monitoring, 21(4), 1849-1878.
Mancini, F., Grassi, F., & Cenni, N. (2021). A workflow based on SNAP–StaMPS open-source tools and GNSS data for PSI-Based ground deformation using dual-orbit sentinel-1 data: Accuracy assessment with error propagation analysis. Remote Sensing, 13(4), 753.
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry. nature, 364(6433), 138-142. https://doi.org/DOI 10.1038/364138a0
Milkov, A. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1-2), 29-42.
Milkov, A. V., Sassen, R., Apanasovich, T. V., & Dadashev, F. G. (2003). Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean. Geophysical research letters, 30(2). https://doi.org/10.1029/2002gl016358
Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and remote sensing magazine, 1(1), 6-43.
Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., & Brusset, S. (2001). Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics, 333(1-2). https://doi.org/10.1016/S0040-1951(00)00280-8
Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System. University of California, San Diego.
Pepe, A., & Calò, F. (2017). A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Applied Sciences, 7(12), 1264.
Pérez-Belzuz, F., Alonso, B., & Ercilla, G. (1997). History of mud diapirism and trigger mechanisms in the Western Alboran Sea. Tectonophysics, 282(1-4), 399-422.
Ponziani, F., Ciuffi, P., Bayer, B., Berni, N., Franceschini, S., & Simoni, A. (2023). Regional-scale InSAR investigation and landslide early warning thresholds in Umbria, Italy. Engineering Geology, 327, 107352.
Rau, R.-J., Lee, J.-C., Ching, K.-E., Lee, Y.-H., Byrne, T. B., & Chen, R.-Y. (2012). Subduction-continent collision in southwestern Taiwan and the 2010 Jiashian earthquake sequence. Tectonophysics, 578, 107-116.
Rau, R.-J., Wen, Y.-Y., Ching, K.-E., Hsieh, M.-C., Lo, Y.-T., Chiu, C.-Y., & Hashimoto, M. (2022). Origin of coseismic anelastic deformation during the 2016 Mw 6.4 Meinong Earthquake, Taiwan. Tectonophysics, 836, 229428.
Schmitt, M. (2014). Reconstruction of urban surface models from multi-aspect and multi-baseline interferometric SAR Technische Universität München].
Shih, T. (1967). A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud. Petrol. Geol. Taiwan, 5, 259-311.
Shirzaei, M., & Walter, T. R. (2011). Estimating the Effect of Satellite Orbital Error Using Wavelet-Based Robust Regression Applied to InSAR Deformation Data. IEEE Transactions on geoscience and remote sensing, 49(11), 4600-4605. https://doi.org/10.1109/Tgrs.2011.2143419
Sreejith, K. M., Jasir, M. C. M., Sunil, P. S., Rose, M. S., Saji, A. P., Agrawal, R., Bushair, M. T., Kumar, K. V., & Desai, N. M. (2024). Geodetic Evidence for Cascading Landslide Motion Triggered by Extreme Rain Events at Joshimath, NW Himalaya. Geophysical research letters, 51(9). https://doi.org/10.1029/2023GL106427
Stephenson, O. L., Liu, Y. K., Zhang, Y. J., Simons, M., Rosen, P., & Xu, X. H. (2022). The Impact of Plate Motions on Long-Wavelength InSAR-Derived Velocity Fields. Geophysical research letters, 49(21). https://doi.org/10.1029/2022GL099835
Sun, C.-H., Chang, S.-C., Kuo, C.-L., Wu, J.-C., Shao, P.-H., & Oung, J.-N. (2010). Origins of Taiwan’s mud volcanoes: Evidence from geochemistry. Journal of Asian Earth Sciences, 37(2), 105-116.
Sung, Q.-C., Chang, H.-C., Liu, H.-C., & Chen, Y.-C. (2010). Mud volcanoes along the Chishan fault in Southwestern Taiwan: A release bend model. Geomorphology, 118(1-2), 188-198.
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan.
Teng, L. S. (1990). Geotectonic Evolution of Late Cenozoic Arc Continent Collision in Taiwan. Tectonophysics, 183(1-4), 57-76. https://doi.org/10.1016/0040-1951(90)90188-E
Tizzani, P., Berardino, P., Casu, F., Euillades, P., Manzo, M., Ricciardi, G., Zeni, G., & Lanari, R. (2007). Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sensing of Environment, 108(3), 277-289.
Urgilez Vinueza, A., Handwerger, A. L., Bakker, M., & Bogaard, T. (2022). A new method to detect changes in displacement rates of slow-moving landslides using InSAR time series. Landslides, 19(9), 2233-2247.
Vassileva, M., Motagh, M., Roessner, S., & Xia, Z. (2023). Reactivation of an old landslide in north–central Iran following reservoir impoundment: results from multisensor satellite time-series analysis. Engineering Geology, 327, 107337.
Walters, R. J., Parsons, B., & Wright, T. J. (2014). Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia. Journal of Geophysical Research-Solid Earth, 119(6), 5215-5234. https://doi.org/10.1002/2013jb010909
Wang, H., & Wright, T. (2012). Satellite geodetic imaging reveals internal deformation of western Tibet. Geophysical research letters, 39(7).
Wang, T., & Yan, C. (2023). Investigating the influence of water on swelling deformation and mechanical behavior of mudstone considering water softening effect. Engineering Geology, 318, 107102.
Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 102(B8), 18057-18070.
Weiss, J. R., Walters, R. J., Morishita, Y., Wright, T. J., Lazecky, M., Wang, H., Hussain, E., Hooper, A. J., Elliott, J. R., Rollins, C., Yu, C., González, P. J., Spaans, K., Li, Z. H., & Parsons, B. (2020). High-Resolution Surface Velocities and Strain for Anatolia From Sentinel-1 InSAR and GNSS Data. Geophysical research letters, 47(17). https://doi.org/10.1029/2020GL087376
Xu, B., Feng, G. C., Li, Z. W., Wang, Q. J., Wang, C. C., & Xie, R. G. (2016). Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sensing, 8(8), 652. https://doi.org/10.3390/rs8080652
Yan, H., Yu, F., Zhu, C., Yuan, J., Wang, Q., & Wu, J. (2025). A new swelling-creep model for red-bed mudstone and its application. Frontiers in Earth Science, 13, 1577262.
Yang, F., Jiang, Z., Ren, J., & Lv, J. (2022). Monitoring, prediction, and evaluation of mountain geological hazards based on InSAR technology. Scientific Programming, 2022(1), 2227049.
Yang, Y.-H., Chen, Q., Diao, X., Zhao, J., Xu, L., & Hu, J.-C. (2021). New interpretation of the rupture process of the 2016 Taiwan Meinong Mw 6.4 earthquake based on the InSAR, 1-Hz GPS and strong motion data. Journal of Geodesy, 95, 1-12.
Yi, D.-C., Chuang, R. Y., Chung, L.-H., Lin, C.-W., & Rau, R.-J. (2023). Surface deformation induced by the 2016 Meinong earthquake and its implications to active folds. Terrestrial, Atmospheric and Oceanic Sciences, 34(1), 21.
You, C. F., Gieskes, J. M., Lee, T., Yui, T. F., & Chen, H. W. (2004). Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19(5), 695-707. https://doi.org/10.1016/j.apgeochem.2003.10.004
Yu, S.-B., & Chen, H.-Y. (1994). Global positioning system measurements of crustal deformation in the Taiwan arc-continent collision zone. Terrestrial, Atmospheric and Oceanic Sciences, 5(4), 477-498.
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
Yu, S. B., Kuo, L. C., Punongbayan, R. S., & Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan-Luzon region. Geophysical research letters, 26(7), 923-926. https://doi.org/10.1029/1999gl900148
Yun, H.-W., Kim, J.-R., Yoon, H., Choi, Y., & Yu, J. (2019). Seismic surface deformation risks in industrial hubs: A case study from Ulsan, Korea, using DInSAR time series analysis. Remote Sensing, 11(10), 1199.
Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences, 133, 104331.
Zhao, R., Li, Z.-w., Feng, G.-c., Wang, Q.-j., & Hu, J. (2016). Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sensing of Environment, 184, 276-287.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005-5017.