簡易檢索 / 詳目顯示

研究生: 陳繹全
Chen, Yi-Chuan
論文名稱: 將快速凝固霧化法製作之6061鋁合金粉末以火花電漿法燒結成塊材及其機械性質之探討
A Study of Employing Spark Plasma Sintering to Consolidate 6061 Al Powder Synthesized by Rapid-Solidifying Atomization into Bulk 6061 Al Alloy and its Mechanical Properties
指導教授: 曹紀元
Tsao, Chi-Yuan A.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 138
中文關鍵詞: 快速凝固霧化(RSA)火花電漿燒(SPS)背向式擠型擠型性6061鋁合金機械性質粉末冶金
外文關鍵詞: Rapid-Solidifying Atomization, Spark Plasma Sintering, Backward Extrusion, Workability, 6061 Alloy, Mechanical Properties, Powder Metallurgy
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 火花電漿燒結(Spark Plasma Sintering)是最近熱門粉末冶金技術之一,其優點為快速燒結與高緻密化。本文研究即以快速凝固霧化(Rapid-Solidifying Atomization,RSA)製作6061鋁合金粉末,再以火花電漿燒結技術(SPS)固結粉末,其分別分為九組不同參數(溫度、時間) 對微結構與機械性質之影響也將於本文中被討論。將此九組SPS樣本與6061鋁合金原材分別進行室溫壓縮及微硬度測試,分別選擇其中擁有最高強度的組別利用背向式擠型分析其加工性,且繪製其極限圖(limit diagram)。目前的研究成果顯示以快速凝固霧化法所得之粉末其晶粒<2μm,將粉末於400℃持溫燒結10分鐘後,SPS 6061鋁合金之壓縮強度與硬度較鑄造材分別高1.6倍與1.5倍。此外,材料之加工性質透過背向式擠型分析後,於擠型極限圖中顯示其加工範圍擴增。SPSed 6061鋁合金亦展現了較高拉伸強度和延性。

    Spark Plasma Sintering (SPS) is one of the promising PM techniques in recent years, with which sintering process can be accomplished in a relatively short time. In this study, SPS was used to consolidate the AA6061 Al alloy powders synthesized by Rapid-solid Atomization (RSA) with grain sizes of less than 2μm, in which nine sets of parameters, temperature and time, were designed to study the effects of the parameters on the microstructure and mechanical properties. The micro-hardness and compressive properties of the nine SPSed specimens and conventional cast 6061 alloy were tested and compared. The highest compressive strength and hardness were obtained with the specimen SPSed at 400oC for 10 minutes. The compressive strength and hardness of SPSed 6061 are 1.6 times and 1.5 times higher than those of the conventional cast 6061, respectively. The SPSed 6061 with the highest compressive strength and conventional cast 6061were then extruded with backward extrusion method to study the workability of the SPSed 6061, and Workability Limit Diagram was plotted accordingly, which shows that the SPSed 6061 has better workability than conventional cast 6061. The extruded SPSed 6061 and conventional cast 6061 were then tensile-tested, and the SPSed 6061 has higher UTS and ductility than as-cast ones.

    摘要 II Abstract III 致謝 V 第一章 前言 1 第二章 理論基礎及文獻回顧 3 2.1 氣體霧化法 3 2.2 傳統金屬粉末製造方法 4 2.3 火花電漿燒結(SPS, Spark Plasma Sintering) 5 2.4 金屬機械性質理論 7 2.4.1 熱加工成型效應 7 2.4.2 理論基礎與相關研究 8 2.5 鋁-鎂-矽三元合金相圖 11 2.6 合金成分對於機械性質的影響 12 2.7 析出物的種類與型態 13 2.8 擠型形式與分析理論 14 第三章 實驗方法 18 3.1 實驗材料 18 3.2 製備RSA(Rapid Solidifying Atomization)之AA6061 Powders 18 3.3 視密度與敲擊密度量測 19 3.4 火花電漿燒結 (Spark Plasma Sintering) 19 3.5 金相製備與其微結構分析 20 3.6 晶體結構鑑定 21 3.7 室溫壓縮實驗 21 3.8 擠型實驗 22 3.9 硬度試驗 23 3.10 拉伸測試 23 3.11 穿透式電子顯微鏡(TEM)相分析 24 第四章 結果及討論 25 4.1 粉末性質 25 4.1.1 粉末外觀與粉末流動性 25 4.1.2 鑄造材與粉末之化學成分及微結構分析 26 4.2 燒結成品微結構分析 28 4.3 機械性質分析 29 4.3.1 微硬度與燒結參數之關係 29 4.3.2 室溫壓縮強度與燒結參數之關係 30 4.3.3 加工性實驗分析 31 4.3.4 拉伸試驗 34 第五章 結論 37 參考文獻 39

    1.Özbilen, S., A. Uenal, and T. Sheppard, Influence of liquid metal properties on particle size of inert gas atomised powders. Powder metallurgy, 1996. 39(1): p. 44-52.
    2.German : Powder Metallurgy Science, 2nd ,p99-p110.
    3.Dombrowski, N. and W. Johns, The aerodynamic instability and disintegration of viscous liquid sheets. Chemical Engineering Science, 1963. 18(3): p. 203-214.
    4.Anderson, I.E. and R.L. Terpstra, Progress toward gas atomization processing with increased uniformity and control. Materials Science and Engineering: A, 2002. 326(1): p. 101-109.
    5.Krajnikov, A., et al., Surface chemistry of water atomised aluminium alloy powders. Applied surface science, 2002. 191(1-4): p. 26-43.
    6.Markus, S., U. Fritsching, and K. Bauckhage, Jet break up of liquid metal in twin fluid atomisation. Materials Science and Engineering: A, 2002. 326(1): p. 122-133.
    7.Özbilen, S., Influence of atomising gas on particle characteristics of Al, Al-1wt%Li, Mg, and Sn powder. Powder metallurgy, 2000. 43(2): p. 173-180.
    8.RAGHUNATHAN, N. and T. SHEPPARD, Fabrication and properties of rapidly solidified magnesium and Mg-Si alloys. Materials science and technology, 1990. 6(7): p. 629-640.
    9.Li, G., H. Gill, and R. Varin, Magnesium silicide intermetallic alloys. Metallurgical and Materials Transactions A, 1993. 24(11): p. 2383-2391.
    10.Mabuchi, M. and K. Higashi, Strengthening mechanisms of Mg-Si alloys. Acta materialia, 1996. 44(11): p. 4611-4618.
    11.王遐編著, 粉末製造與傳統粉末加工成形, 機械技術出版社, 第二章, 民國81年3月.
    12.陳克紹編譯, 粉末冶金概論, 全華科技圖書股份有限公司, 第二章, 民國74年.
    13.Tokita, M. Mechanism of spark plasma sintering. 1999. Japan.
    14.Tokita, M., Trends in Advanced SPS Spark Plasma Sintering Systems and Technology. Joztrital of the Society of Powder Techtrology Jayat, 1993. 30 [ll] p. pp.790- 804.
    15.Hertz, H., Miscellaneous papers1896: Macmillan.
    16.Pharr, G., W.C. Oliver, and F. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. Journal of Materials Research, 1992. 7(3): p. 613-617.
    17.Lennart Backerud, Ella Krol , Jarmo Tamminen, Solidification Characteristics of Aluminium Alloys, volume 1: Wroought Alloys, Department of Structural Chemistry Arrhenius Laboratory , University of Stockholm, 1986.
    18.William F. Hosford, Robert M. Caddell, ‘Metal Forming, Mechanics and Metallurgy’, 1983.
    19.T. Sheppard, ‘Extrusion of Aluminium Alloys’, Department of Product Design and Manufacture, Boumemouth University, 1999.
    20.Reed-Hill, R.E. and R. Abbaschian, Physical metallurgy principles. 1973: p. 214-224.
    21.McQueen, H. and O. Celliers, Application of Hot Workability Studies to Extrusion Processing. Part III: Physical and Mechanical Metallurgy of Al&# 8211; Mg&# 8211; Si and Al&# 8211; Zn&# 8211; Mg Alloys. Canadian metallurgical quarterly, 1997. 36(2): p. 73-86.
    22.J. R. Davis & Associates, “Aluminum and Aluminum Alloys”, 1993,p. 569-570.
    23.T. Sheppard, “Extrusion of Aluminum Alloys”, 1999, p.77.
    24.Zhen, L., et al., Precipitation behaviour of Al-Mg-Si alloys with high silicon content. Journal of Materials Science, 1997. 32(7): p. 1895-1902.
    25.T. Sheppard, “Extrusion of Aluminum Alloys”, 1999, p.78-79.
    26.H.W.M. Philips and P.C. Varley, J. Inst. Met, Vol. 69, 1943, p.317.
    27.J.N. Pratt and G. V. Raynor, J. Inst. Met, Vol. 79, 1951,p.211.
    28.Munson, D., A Clarification of the Phases Occurring in Aluminium-Rich Aluminium-Iron-Silicon Alloys, with Particular Reference to the Ternary Phase alpha-AlFeSi. INST METALS J, 1967. 95(7): p. 217-219.
    29.Phragmen, G., On the phases occurring in alloys of aluminium with copper, magnesium, manganese, iron, and silicon. J. Inst. Met, 1950. 77: p. 489-552.
    30.Mulazimoglu, M., et al., Electron microscope study of Al-Fe-Si intermetallics in 6201 aluminum alloy. Metallurgical and Materials Transactions A, 1996. 27(4): p. 929-936.
    31.T. Sheppard, “Extrusion of Aluminum Alloys”, 1999, p.238-239.
    32.J. Hurst and D. M. Ursell ; Met. Treat., 1958. 25, p.409-413.
    33.T. Sheppard, “Extrusion of Aluminum Alloys”, 1999, p.199.
    34.H. Lefebvre : Atomization and Sprays, p11-p14.
    35.Hatch, J.E., Aluminum: properties and physical metallurgy. Vol. 1. 1984: Asm Intl.
    36.Backerud, L., G. Chai, and J. Tamminen, Solidification Characteristics of Aluminum Alloys. Vol. 2. Foundry Alloys. American Foundrymen's Society, Inc., 1990, 1990: p. 266.
    37.Liu, D., et al., Spark Plasma Sintering of Cryomilled Nanocrystalline Al Alloy - Part II: Influence of Processing Conditions on Densification and Properties. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2012. 43A(1): p. 340-350.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE