研究生: |
李洋丞 Lee, Yang-Cheng |
---|---|
論文名稱: |
年輕人輕度解離性脊椎滑脫症之有限元素法分析:滑脫節與鄰近節椎間盤及小面關節的影響 Finite Element Analysis of Low-Grade Spondylolytic Spondylolisthesis: Impacts on Olisthetic and Adjacent Intervertebral Discs and Facet Joints in Young Adults |
指導教授: |
林冠中
Lin, Kuan-Chung |
共同指導教授: |
黃國淵
Huang, Kuo-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 椎弓斷裂 、脊椎滑脫 、滑脫節 、鄰近節 、椎間盤 、小面關節 、有限元素法 |
外文關鍵詞: | Pars interarticularis defect, Spondylolisthesis, Olisthetic level, Adjacent level, Intervertebral disc, Facet joints, Finite Element Method |
相關次數: | 點閱:82 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據統計,超過八成的成年人曾經歷過背痛,其主要原因大多來自腰部病變。在醫學臨床中,一種常見的疾病是解離性脊椎滑脫症。解離性脊椎滑脫症約有90%發生在第五腰椎。當第五腰椎椎弓斷裂時,最初會導致脊椎解離,這會使患者的移動性和活動性降低,隨後可能造成脊椎滑脫,導致脊椎體不穩定。當發生脊椎滑脫後,滑脫節(L5-S1)椎間盤將承受到更大的壓力,同時小面關節可能產生應力轉移,再加上身體重量和脊椎活動的影響,長期下來會導致椎間盤含水量降低,使椎間盤高度降低,從而導致椎間盤退化。
配合醫學臨床試驗上的結果,本研究旨在透過數值分析有限元素法(Finite Element Method, FEM)來支持這種觀點,並進一步探討在不同腰薦角和不同滑脫等級下,椎間盤和小面關節在自重作用下的應力和應變能密度分佈情況。該研究旨在為脊椎疾病的治療提供更精確的方向,並促進醫學研究的進步。
本研究分析了不同腰薦角度(30°、40°和50°)與滑脫程度(Grade 0.至Grade 2.)下患有輕度解離性脊椎滑脫症(L5-S1)的患者,並模擬自重(Self Weight)作用下的情境。研究結果顯示,指出在自身重量的作用下,椎間盤滑脫節(L5-S1)的退化程度較鄰近節(L4-L5)更為顯著,而且隨著滑脫等級的增加,鄰近節(L4-L5)的椎間盤應力趨勢也會逐漸上升。然而,小面關節滑脫節(L5-S1)的退化程度不一定比鄰近節(L4-L5)更為顯著,因為隨著滑脫等級的增加,存在應力轉移的影響。此外,研究還發現了椎間盤及小面關節之間存在相互作用的現象。同時,研究結果也驗證了其他臨床經驗所描述的現象,即IVD5S的滑脫可能導致鄰近節的退化。
According to statistics, over eighty percent of adults have experienced back pain, with the main causes often stemming from lumbar pathology. In clinical medicine, a common condition is spondylolytic spondylolisthesis. Approximately 90% of spondylolytic spondylolisthesis cases occur at the fifth lumbar vertebra. When the pars interarticularis defect of the fifth lumbar vertebra fractures, it initially results in spondylolysis, reducing the patient's mobility and activity. Subsequently, it may progress to spondylolisthesis, leading to spinal instability. Following vertebral slippage, the intervertebral disc at the olisthetic level (L5-S1) bears increased pressure, and there may be stress transfer in the facet joints. Coupled with the effects of body weight and spinal movement, this can lead to reduced disc hydration and disc height, ultimately causing disc degeneration.
Aligned with findings from medical clinical trials, this study aims to support this perspective through numerical analysis using the finite element method (FEM). It further investigates the stress and strain energy density distribution in the intervertebral disc and facet joints under self-weight conditions at different lumbosacral angles and degrees of slippage. The research seeks to provide a more accurate direction for the treatment of spinal diseases and promote advancements in medical research.
The study analyzed patients with mild degenerative spondylolisthesis (L5-S1) at different lumbosacral angles (30°, 40°, and 50°) and degrees of slippage (Grade 0 to Grade 2), simulating self-weight conditions. The research findings indicate that under the influence of self-weight, the degeneration of the intervertebral discs at the olisthetic level (L5-S1) is more significant compared to the adjacent level (L4-L5). Moreover, with an increase in the slippage grade, there is a gradual upward trend in the stress on the intervertebral discs of the adjacent level (L4-L5). However, the degree of degeneration of the facet joints at the olisthetic level (L5-S1) may not necessarily be more pronounced than that of the adjacent level (L4-L5), as there is an influence of stress transfer with the increase in slippage grade. Additionally, the study also found a phenomenon of interaction between the intervertebral discs and facet joints. Furthermore, the research results validate the phenomenon described in other clinical experiences, namely that the slippage of IVD5S may lead to degeneration of the adjacent level.
[1] Tissue Behavior, Injury, Healing, and Treatment. https://reurl.cc/1v2mdm.
[2] 專技骨科疾病物理治療學. https://t.ly/K_uTS.
[3] M.A. Adams and W.C. Hutton. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. The Journal of Bone & Joint Surgery British Volume, 62(3):358-362, 1980.
[4] G. Baroud, J. Nemes, P. Heini, and T. Steffen. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. European Spine Journal, 12:421-426, 2003.
[5] W.J. Beutler, B.E. Fredrickson, A. Murtland, C.A. Sweeney, W.D. Grant, and D. Baker. The natural history of spondylolysis and spondylolisthesis: 45-year follow-up evaluation. Spine, 28(10):1027-1035, 2003.
[6] N.H. Campbell-Kyureghyan. Computational analysis of the time-dependent biomechanical behavior of the lumbar spine. The Ohio State University, 2004.
[7] J. Chazal, A. Tanguy, M. Bourges, G. Gaurel, G. Escande, M.M. Guillot, and G. Vanneuville. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. Journal of biomechanics, 18(3):167-176, 1985.
[8] J.TM. Cheung, M. Zhang, and D.H.K. Chow. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study. Clinical Biomechanics, 18(9):790-799, 2003.
[9] R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Witt. Concepts and applicaons of finite element analysis, wiley. 2002.
[10] Medtronic Sofamor Danek. Posterior lumbar interbody fusion. https://reurl.cc/yLQmy8.
[11] G. Denoziere. Numerical modcling of a ligamentous lumbar motion segment. 2004.
[12] J.B Felend. The spine. https://t.ly/04WtN.
[13] Y. Floman. Progrcssion of lumbosacral isthmic spondylolisthesis in adults. Spine, 25(3):342-347, 2000.
[14] J. Foltz. Exploring facet syndrome: How chiropractic care can offer relief at pittsburgh physical medicine. https://reurl.cc/13q16Q.
[15] V.H. Frankel and M. Nordin. Basic biomechanics of the skeletal system. 1980.
[16] B.E. Fredrickson, D. Baker, W.J. McHolick, H.A. Yuan, and J.P. Lubicky. The natural history of spondylolysis and spondylolisthesis. JBJS, 66(5):699—707, 1984.
[17] A. Glema, T. Lodygowski, W. Kakol, M. Ogurkowska, and M. Wierszycki. Modeling of intervertebral discs in the numerical analysis of spinal segment. ECCOMAS 2004, 2004.
[18] V.K. Goel, H. Park, and W. Kong. Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. 1994.
[19] K. Goto, N. Tajima, E. Chosa, K. Totoribe, H. Kuroki, Y. Arizumi, and T. Arai. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model. Journal of orthopaedic science, 7(2).243-246, 2002.
[20] G. Herbiniaux. Traité sur divers accouchemens laborieux et sur les polypes de la matrice; ouvrage dans lequel un trouve la description d'un nouveau Levier,... chez JL de Boubers, 1782.
[21] C.C. Hsieh, J.D. Wang, R.M. Lin, C.J. Lin, and K.Y. Huang. Adjacent disc and facet joint degeneration in young adults with low-grade spondylolytic spondylolisthesis: A magnetic resonance imaging study. Journal of the Formosan Medical Association, 114(12):1211-1215, 2015.
[22] H.F. Kilian. Schilderungen neuer Beckenformen und ihres Verhaltens im Leben: der Praxis entnommen. Bassermann & Mathy, 1854.
[23] H.Y. Ko. Biomechanics of the spine and spinal cord and pathophysiology of spinal cord injury. https://reurl.cc/0v2XLK.
[24] C.K. Lee, Y.E. Kim, C.S. Lee, Y.M. Hong, J.M. Jung, and V.K. Goel. Impact response of the intervertebral disc in a finite-element model. Spine, 25(19):2431-2439, 2000.
[25] V.C. Mow and W.C. Hayes. Basic orthopaedic biomechanics. (No Title), 1991.
[26] N.S. Murthy. Imaging of stress fractures of the spine. Radiologic Clinics of North America, 50(4):799-821, 2012.
[27] R.N. Natarajan and G.B.J. Andersson. Modeling the annular incision in a herniated lumbar intervertebral disk to study its effect on disk stability. Computers & structures, 64(5-6):1291-1297, 1997.
[28] F.L. Neugebauer. A new contribution to the history and etiology of spondyl-olisthesis. Clinical Orthopaedics and Related Research®, 117:4-22, 1976.
[29] H.W. Ng and E.C. Teo. Nonlinear finite-element analysis of the lower cervical spine (c4-c6) under axial loading. Clinical Spine Surgery, 14(3):201-210, 2001.
[30] E. Oto. Lumbar vertebra and nerves, illustration. https://reurl.cc/nNEZyD.
[31] E. Peña, B. Calvo, M.A. Martínez, and M. Doblare. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of biomechanics, 39(9):1686-1701, 2006.
[32] T. Pitzen, F.H. Geisler, D. Matthis, H. Müller-Storz, K. Pedersen, and W.I. Steudel. The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment. European Spine Journal, 10:23-29, 2001.
[33] A. Polikeit, S.J. Ferguson, L.P. Nolte, and T.E. Orr. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. European spine journal, 12:413-420, 2003.
[34] A. Rohlmann, N.K. Burra, T. Zander, and G. Bergmann. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. European Spine Journal, 16:1223-1231, 2007.
[35] J.G. Ruiz and Y.S. González. Comparison of hyperelastic material models in the analysis of fabrics. International journal of clothing science and technology, 18(5):314-325, 2006.
[36] K. Sairyo, V.K. Goel, A. Masuda, S. Vishnubhotla, A. Faizan, A. Biyani, N. Ebraheim, D. Yonekura, R.I. Murakami, and T. Terai. Three-dimensional finite element analysis of the pediatric lumbar spine. part i: pathomechanism of apophyseal bony ring fracture. European Spine Journal, 15:923-929, 2006.
[37] D. Schlenzka, M. Poussa, S. Seitsalo, and K. Osterman. Intervertebral disc changes in adolescents with isthmic spondylolisthesis. Clinical Spine Surgery, 4(3):344-352, 1991.
[38] S. Seitsalo, D. Schlenzka, M. Poussa, and K. Österman. Disc degeneration in young patients with isthmic spondylolisthesis treated operatively or conservatively: a longterm follow-up. European Spine Journal, 6:393-397, 1997.
[39] M. Sharma, N.A. Langrana, and J. Rodriguez. Role of ligaments and facets in lumbar spinal stability. Spine, 20(8):887-900, 1995.
[40] M. Sharma, N.A. Langrana, and J. Rodriguez. Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response. 1998.
[41] G. Shin, G.A. Mirka, and E.G. Loboa. Viscoelastic responses of the lumbar spine during prolonged stooping. In Proceedings of the Human Factors and Ergonomics Society annual meeting, volume 49, pages 1269-1273. SAGE Publications Sage CA: Los Angeles, CA, 2005.
[42] A. Shirazi-Adl, A.M. Ahmed, and S.C. Shrivastava. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. Journal of biomechanics, 19(4):331-350, 1986.
[43] M.J. Silva, C. Wang, T.M. Keaveny, and W.C. Hayes. Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone, 15(4):409-414, 1994.
[44] F. Simoens. Disc herniation. https://reurl.cc/2YD8oa.
[45] T. Soler and C. Calderón. The prevalence of spondylolysis in the spanish elite athlete. The American journal of sports medicine, 28(1):57-62, 2000.
[46] Systemes, Dassault. Abaqus analysis user's guide.
[47] J.L. Wang, M. Parnianpour, A. Shirazi-Adl, and A.E. Engin. Viscoelastic finite-element analysis of a lumbar motion segment in combined compression and sagittal flexion: Effect of loading rate. Spine, 25(3):310-318, 2000.
[48] AAPM White. Clinical biomechanics of the spine. Clinical biomechanics of the spine, 1990.
[49] 劉哲榮. 後方腰椎間融合手術後應力重新分配之有限元素分析. Master's thesis, 2009.
[50] 李堅. 有關「椎間盤突出」的八個疑問(二). https://reurl.cc/RWmR5G.
[51] 林冠瑋. 電腦輔助脊椎之有限元素分析. Master's thesis, 2007.
[52] 許家瀚. 以有限元素法分析腰薦椎退化經軸向椎間融合手術後之生物力學影響. Master's thesis, 2015.
[53] 趙逸民. 以有限元素法分析腰薦椎解離性滑脫後對脊椎生物力學之影響. Master's thesis, 2011.