| 研究生: |
劉俊傑 Liu, Chun-Chieh |
|---|---|
| 論文名稱: |
不規則波作用下柔性織物工法之輸砂模式探討 Transport Modeling on Bed Sediment with Flexible Textile Work under Irregular Waves |
| 指導教授: |
簡仲和
Chien, Chung-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 碎波經驗係數 、柔性織物工法 、Larson(1988)輸砂模式 |
| 外文關鍵詞: | breaking criteria, sediment transport model, flexible textile works |
| 相關次數: | 點閱:131 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要在使用「台南七股段防風林地侵蝕防護工法探討」計畫有關動床水工模型試驗中之波浪、地形數據,探討Berkhoff(1972)波浪模式、Larson(1988)輸砂模式及地形模式於柔性織物工法佈置下之應用情形。
在Berkhoff(1972)緩坡方程式之波浪模式檢定結果顯示,使用Goda(1975) 碎波條件計算碎波點附近波高時,其碎波經驗係數Ac需由一般之0.17使用值,調整至0.20時,較能改善動床斷面下碎波點向岸內移,及其鄰近波高的模擬誤差。而應用於發生二次碎波現象之計算時,以近岸穩定波高作為波浪模式的輸入值,亦較能得到良好的計算結果。
在輸砂模式中,本文先進行Larson(1988)漂砂模式之參數率定,並探討傳輸率係數Kc與坡度相關係數ε對輸砂、地形變遷之影響情形。另提擬Larson(1988)輸砂模式第Ⅳ區漂砂函數修正方法,使其模擬結果較能符合於柔性織物工法佈置下灘線附近之試驗地形;並在不同水深與柔性織物佈置深度下,調整傳輸率係數Kc的大小,藉由試驗地形數據之檢定結果,建議係數Kc大小之較佳值。
The physical model test data were used to study the application feasibility of the wave model of Berkhoff (1972), sediment transport model of Larson(1988) and bathymetry updating model to simulate the wave transformation and morphology change behind the flexible textile works in this study. Those physical model tests are performed in the sand bed flume with the varied water depth and submerged depth of flexible textile works in a project named as "Protection Program for Erosion of Windbreak Forest Land at Chi-Gu Coast, Tainan".
As to the application of wave model, based on Mild Slop Equation (Berkhoff, 1972), it is found that the simulating accuracy of breaking location shoreward and wave height transformation in the sand bed could be improved when the coefficient Ac of breaking criteria (Goda, 1975) was increased to 0.20 instead of the suggested value of 0.17 in common. Meanwhile, if the stable wave height incoming before the secondary breaking was taken as the input value in the computing procedure, the better agreement of computed data with those in the model tests could be obtained.
In the calibration of the sediment transport model (Larson, 1988), the influences of transport rate coefficient Kc and slope-dependent coefficient ε on the transport rate and morphology change without the flexible textile works were first investigated. Then, according to the data comparisons of transport rate and morphology change in the computations and model tests with the varied water depth and submerged depth of flexible textile works, a suitable range of Kc and ε were suggested. In addition, the correction method for the sediment transport function at IV zone in Larson’s model has already submitted in order to get the better agreement of computing results with the morphology data near the water level line in the model tests with flexible textile works.
1. Abbott, M.B.(1979), “Computational Hydraulics.”, Pitman Books, London.
2. Ackers, P. and White, WR (1973), “Sediment Transport: New Approach and Analysis.”, J. Hydr. Div., ASCE, Vol. 99(11), pp. 2041-2060.
3. Bailard, L. A.(1984), “A simplified model for longshore transport.”, Proc. 19th ICCE, ASCE, Houston, pp. 1454-1470.
4. Bayram, A., etc.(2001), “Cross-shore distribution of longshore sediment transport: Comparison between predictive formulas and field measure- ments.”, Coastal Eng., 44, pp. 79-99.
5. Berkhoff, J.C.W.(1972), “Computation of Combined Reflection -Diffration.”, Proc. 13th Coastal Eng. Conf., pp. 471-490.
6. Bijker, E.W., (1971) “Longshore transport computations.”, Proc. ASCE J. the Waterways, Harbors and Coastal Engineering Division, WW4.
7. Bagnold, R.A.(1963), “Mechanics of marine sedimentation.”, The Sea(ed. By M. N. Hill), Vol. 3, Interscience, New York, pp. 507-528.
8. Battjes, J.A. and Janssen, J.P.F.M.(1978), “Energy loss and set-up due to breaking of random waves.”, Proc. 16th Coastal Eng. Conf., pp. 569-587.
9. Dally, W. R., Dean R. G. and Dalrymple R. A.(1985), “Wave height variation across beaches of arbitrary profile.” , Journal of Geophysical Research, Vol. 90(C6) ,pp.11917 -11927.
10. David, L. Kriebel and Robert, G. Dean(1985), “Numerical Simulation of Time-Dependent Beach and Dune Erosion.”, Coastal Eng., No 9, pp. 221-245.
11. Dean, R. G.(1991), “Equilibrium beach profiles: Principles and Appli- cations.”, J. Coastal Res., 7, 1, pp.53-84.
12. Einstein, H. A.(1950), “The bed-load function for sediment transport on open channel flows. ”, Tech. Bull. No. 1026, USDA, Soil Conservation Service, pp. 71.
13. Engelund, F., and E. Hansen(1967), “A Monograph on Sediment Transport in Alluvial Streams.”, Teknisk Vorlag, Copenhagen., London.
14. Goda, Y.(1975), “Irregular Wave Deformation in The Surf Zone.”, Coastal Eng. in Japan, Vol. 18, pp. 13-26.
15. Hayden, B.(1975), “The carrying capacity dilemma: an alternative approach.”, In (A. C. Swedlund, Ed.) Population Studies in Archaeology and Biological Anthropology: A Symposium. Am. Antiq. 40: pt. 2 memoir 30, pp. 11-21.
16. Horikawa, K.(1981), “Coastal sediment processes”, Annu. Rev. Fluid Mech., 13, pp. 9–32.
17. Isobe, M.(1987), “A parabolic equation model for transformation of irregular waves due to refraction, diffraction and breaking.”, Coastal Eng. in Japan, No 30, pp. 33-47.
18. Isobe, M., Shibata, Y., IZumiya, T. and Watanabe, A.(1988), “Set-up Due to Irregular Waves on a Reef.”, 第35回海岸工學講演會論文集 (in Japanese), pp. 192-196.
19. Izumiya, T. and Endo, M.(1989), “Wave Reflection and Transmission Due to a Submerged Breakwater.”, 第36回海岸工學講演會論文集 (in Japanese), pp. 638-642.
20. Larson, M., Kraus, N.C. and Sunamura(1988), T., “Beach Profile Change : Morphology, Transport Rate, and Numerical Simulation.”, Proc. 21st Coastal Eng. Conf., ASCE, pp. 1295-1309.
21. Larson, M. and Kraus, N.C.(1991), “Mathematical modeling of the fate of beach fill.”, Coastal Eng., No 16, pp. 83-114.
22. Lé Méhauté, B. and Koh R. C. Y.(1967), “On the breaking of waves arriveing at an angle to the shore.”, J. Hydraul. Res., Vol. 5, No. 1, pp. 67-88.
23. Longuet-Higgins, M. S. and Stewart, R. W.(1964), “Radiation Stresses in Water Waves-A Physical Discussion with Applicatino.”, Deep-sea Res., Vol. 11, pp.529-562.
24. Madsen, O. S., and W. D. Grant(1976), “Quantitative description of sediment transport by waves”, Proc. 15th Coastal Eng. Conf., ASCE, pp. 1093-1112.
25. Meyer-Peter, E. & Muller, R.(1948), “Formulas for Bed-Load-Transport.”, 2nd IAHR Congress, Stockolm.
26. Moore, B. D.(1982), “Beach Profile Evolution in Response to Changes in Water Level and Wave Height.”, M.S. Thesis, UnⅣersity of Delaware, Newark, pp. 121.
27. Ostrowski R.(2003), “A quasi phase-resolving model of net sand transport and short-term cross-shore profile.”, Arch. Hydro-Eng. Environ. Mech., 49(1), pp. 107-118.
28. Rakha, K.A. , Deigaard, R. and Broker, I.(1997), “A phase-resolving cross shore sediment transport model for beach profile evolution.”, Coastal Eng., No 31, pp. 231-261.
29. Rakha, K.A. and Kamphuis, J.W.(1997), “A morphology model for an eroding beach backed by a seawall.”, Coastal Eng., Vol. 30, pp. 53-75.
30. Roelvink, J. A., and Broker, H. I.(1993), “Cross shore profile models.”, Coastal Eng., Vol. 21, pp. 163-191.
31. Shields, A.(1936), “Anwendung der Ähnlichkeits-Mechanik und der Turbulenz-forschung auf die Geschiebebewegung.”, Preussische Versuchsanstalt für Wasserbau und Schiffbau, Vol. 26, Berlin.
32. Stive, M.J.F., and Battjes, J. A(1985)., “A model for offshore sediment transport”, Proc 19th ICCE, ASCE, Houston, pp. 1420-1436.
33. Sleath, J.F.A.(1978), “Measurements of bed load in oscillatory flow”, Proc. ASCE, Vol. 104, No. WW4, pp. 291-307.
34. Sunamura, T.(1982), “Laboratory study of on-offshore sediment transport rate in shallow water region”, Proc. 29th Japanese Conf. on Coastal Eng., JSCE, pp. 239-243(in Japanese).
35. Van Rijn, L.C.(1984), “Sediment transport: Part Ⅰ: Bed load transport; Part Ⅱ: Suspended load transport; Part Ⅲ: Bed forms and alluvial roughness.”, J. Hydraulic Division 110(10), 1431-1456; 110(11), 1613-1641; 110(12), pp. 1733-1754.
36. Watanabe, A. K., Maruyama, T. Shimizu, and T. Sakakiyama(1986), “Numerical prediction model of three-dimensional beach deformation around a structure.” , Coastal Eng. in Japan, Vol. 29, pp. 19-39.
37. Watanabe, A. and Dibajnia M.(1988), “A numerical model of wave deformation in surf zone.”, Proceedings of 21th International Conference on Coastal Engineering, Malaga, ASCE, Vol. 1, pp. 578-587.
38. Watanabe, A.(1992), “Total rate and distribution of longshore sand transport.”, Proc. 23rd ICCE, ASCE, pp. 2528-2541.
39. 蔡清標、陳鴻彬、許修党(1993),「碎波帶波高分佈之計算模式」,中華民國第十五屆海洋工程研討會論文集,pp. 107-117。
40. 廖哲民(1995),「應用能譜觀念由緩坡方程式求解斜坡上波場變形之計算方法」,國立成功大學水利暨海洋工程研究所論文。
41. 許泰文、藍元志、李兆芳(2000),「以有限元素法預測海灘斷面變化」,中國土木水利工程學刊,第十二卷,第四期,pp. 807-816。
42. 簡仲和、黃建維、郭晉安等(2002),「台南七股段防風林地侵蝕防護工法探討」,經濟部水利署第六河川局。
43. 郭金棟(2004),「海岸保護 -- 海岸環境創造序論」,科技圖書。
44. 許泰文(2003),「近岸水動力學」,中國土木水利工程學會。