簡易檢索 / 詳目顯示

研究生: 林育潤
Lin, Yu-Run
論文名稱: 以新穎的聚苯胺植入法增進碳電極之電化學超電容
A Novel Method for Electrochemical Deposition of Polyaniline to Enhance the Capacitance of Porous Carbon Electrode
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 95
中文關鍵詞: 電化學電容器活性碳纖維布電極吸附聚苯胺
外文關鍵詞: electrochemical capacitor, polyaniline, adsorption, activated carbon fibric electrode
相關次數: 點閱:94下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 活性碳纖維布電極之電化學電容器,常藉由將導電高分子沉積於其上以增加電容量,電化學沉積的通常是以適當的電化學方法在固定單體的電解質中進行,但是這些方法也許會導致纖維布內部的孔洞被導電高分子阻塞而使離子阻力增加,故於此欲發展吸附聚合法以解決此問題。

    單体吸附量可以經由將纖維布浸泡在不同濃度的苯胺而控制,吸附後再以電聚合使聚苯胺能於孔道內形成,於此以兩種電聚合法進行實驗,其一,A85,以定0.85V的電位進行聚合,其二,A65,先在0.85V進行聚苯胺成核後,再將電位轉至0.65V進行聚苯胺的成長。
    以聚苯胺改質之碳纖維布複合電極以循環伏安法進行測試並且分析,當少量的聚苯胺沉積在碳纖維內部時,其造成之阻力並不大,而若是太多量的沉積則會因聚苯胺的阻塞孔洞而使內部總阻力明顯上升。

    聚苯胺、聚苯胺改質之活性碳纖維布電極以及組合之電容器的電容及阻力亦在這裡被研究,聚苯胺的比電容通常隨著沉積量增加而減少,其原因可能是氮原子與共同離子的結合隨著聚苯胺本身結構阻塞程度而增加;在A85-20的電極與組裝之電容器同時擁有好的電容表現極低的阻力,A65系列可以使組裝之電容器阻力值降至ACF電容器的一半。

    Capacitance enhancement of activated carbon fabric employed as electrode material for electrochemical capacitors was conducted by electrochemical deposition of conductive polymer. Electrochemical deposition of conducting polyaniline onto the carbon was always carried out in electrolyte contains monomer and different electrochemical methods were applied properly. But these methods may block electrolyte into pore of the carbon material from outside and lead to increase of resistance of ion so that the Adsorption-Polymerization Method was developed in this work.

    Different amounts of adsorbate on the carbon can be varied by concentration of aniline monomer in adsorption process. After adsorption, electropolymerization was carried out in two potential step methods in order to form the polyaniline oligomer inside the pores of carbon. The potential of the first method, A85, was hold at 0.85V during the polymerization process. The second method, A65, was applied to 0.85V for nucleation, and followed by 0.65V for growth the polymer chains.

    The cyclic voltammetry experiment was performed used to analyze the PANI-modified composite electrodes. As the suitable amount of polyaniline deposited inside the activated carbon fiberic the ion migration resistance could be small, and as the amounts increase the resistance increased suddenly due to polyaniline block the pores of the activated carbon fibers.

    The electrochemical properties of loaded polyaniline, the PANI-modified composite electrodes and assembled capacitors were investigated here, including the capacitance and resistance. The specific capacitance of polyaniline usually decrease with the amount of deposition probably due to the increasing extent of obstructing N-atom from counter ion binding; the capacitance of the electrodes had a maximum at A85-20 and also had good performance of capacitance and low overall resistance in the assembled A85-20 capacitor. The A-65 set could reduce the resistance to half of the ACF capacitor.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號表 IX 第一章 序論 1 1-1 超高電容器簡介 1 1-2 多孔性碳電極 4 1-3 研究動機與目的 5 1-4 實驗架構 6 第二章 理論說明 7 2-1 導電高分子簡介與應用 7 2-1-1 電聚合 8 2-1-2 聚苯胺的結構 10 2-1-3 聚苯胺儲存電荷的機制 11 2-2 碳材料簡介 12 2-2-1 PAN系碳纖維的物理結構 12 2-3 電化學基本原理 16 2-3-1 電極平衡電位 19 2-3-1 電雙層電容 21 2-3-2 擬電容 26 2-3-3 電位掃瞄下的電化學反應 29 2-3-4 交流阻抗分析法之原理與分析 30 2-3-5 時間常數 35 2-4 氣體吸附原理與分析 36 2-5 液相吸附行為 41 第三章 實驗方法 45 3-1 操作設備及藥品 45 3-2 活性碳纖維電極製作以及組裝電容器 46 3-2-1 碳纖維布的前處理 46 3-2-2 吸附電聚合法 46 3-2-3 電聚合法 47 3-2-4 組裝電容器 48 3-5 電化學分析 48 3-5 物理分析與表面觀察 49 3-5-1 BET 49 3-5-2 SEM 50 第四章 結果與討論 51 4-1 苯胺單體的液相吸附行為 52 4-2 定電位聚合 54 4-3 三極式電化學分析探討 62 4-4 組成之二極式電容器探討 70 4-5 整體評估 78 第五章 結論與展望 80 參考文獻 附錄A 附錄B 附錄C 圖1-1 各種儲能裝置的能量密度與功率密度的分布。2 圖1-2 電化學電容器的示意圖。2 圖2-1 聚苯胺可能的聚合機制。9 圖2-2 聚苯胺電荷儲存機制。11 圖2-3 PAN-based 碳纖維布結構模型,小尺度的橫截面模型。14 圖2-4 PAN-based 碳纖維的微結構。(a)截面 (b)縱切面。15 圖2-5 二極式(左)與三極式(右)的電極關係簡圖。16 圖2-6 二極式電極與電位降示意圖。17 圖2-7 (a)二極式電容示意圖 (b)三極式電容示意圖 18 圖2-8 鋅在鹽酸中腐蝕的電極動力(電位)示意圖。20 圖2-9 在有特定吸附時的電雙層電容模型;電雙層與電位的關係。22 圖2-10 Helmholtz 電雙層結構模型與電位分布圖。23 圖2-11 Stern電雙層結構模型與電位分布圖。24 圖2-12 電雙層結構示意圖。25 圖2-13 循環伏安法的控制電位訊號和電流響應。29 圖2-14 阻抗之複數平面中代表電阻和電容兩部分。32 圖2-15 電阻和電容串聯 (a) 電路圖 (b) 複數平面阻抗圖。33 圖2-16 電阻和電容並聯 (a) 電路圖 (b) 向量總和 (c) 複數平面之阻抗圖。34 圖4-1 吸附聚合法(a)以及一般聚合法(b)的苯胺濃度分佈及聚苯胺可能的分佈。51 圖4-2 苯胺對吸收度的校正曲線。53 圖4-3 苯胺對活性碳纖維布的等溫吸附曲線。53 圖4-4 在不同單體濃度的1 M硫酸中之循環伏安圖。57 圖4-5 利用APM在峰電位聚合時的I-time圖。58 圖4-6 利用APM在先在峰電位成核後轉以半峰電位成長之I-time圖。59 圖4-7 以一般聚合法在峰電位聚合之I-time圖。60 圖4-8 以一般聚合法先以峰電位成核後再轉以半峰電位成長之I-time圖 61 圖4-9 A85系列之複合電極的循環伏安圖。64 圖4-10 A65系列之複合電極的循環伏安圖。65 圖4-11 N85系列之複合電極的循環伏安圖。66 圖4-12 A65系列之複合電極的循環伏安圖。67 圖4-13 A85,A65,N85,N65系列之 與PANI之沉積量的關係圖。68 圖 4-14 三極式A85、N85、A65、N65中之PANI的比電容與沉積量的關係圖。69 圖4-16 A85-2CV圖。掃描速率1 mV/s,於1 M H2SO4。73 圖4-17 A65-2CV圖。掃描速率1 mV/s,於1 M H2SO4。74 圖4-18 N85-2CV圖。掃描速率1 mV/s,於1 M H2SO4。75 圖4-19 N65-2CV圖。掃描速率1 mV/s,於1 M H2SO4。76 表1-1 超高電容器儲存能量的優缺點列表。3 表1-2 電化學電容器與電池特性比較表。3 表2-1 各種物質的電阻係數。13 表2-2 碳材料的性質表。14 表2-3 各種電化學方法之時間參數範圍。35 表4-1 不同方法的消耗電荷量與沉積的PANI重量列表。57 表4-2 三極式A85、A65、N85、N65之不同放電電流之電容量。77 表4-3 二極式A85、A65、N85、N65之不同放電電流之電容量。77

    1.R. Kotz, M. Carlen, “Principle and Application of Electrochemical Capacitors”, Electrochemica Acta, 45, 2483-2498, 2000.
    2.Bonnefoi L, Simon P, Fauvarque JF, Sarrazin C, Sarrau JF, Dugast A. Electrode Compositions for Carbon Power Supercapacitors. Journal of Power Sources 1999; 80, 149-155.
    3.Zheng JP, Jow TR. High Energy and High Power Density Electrochemial Capacitors. Journal of Power Sources 1996; 62, 155-159.
    4.B. E. Conway, Electrochemical Supercapacitors, p. 259, Kluwer Academic / Plenum Publishers, New York, 1999.
    5.E. Frackowiak, F. Eeguin, “Carbon Material for the Electrochemical Storage of Energy in Capacitors”, Carbon, 39, 937-950, 2001.
    6.D. Qu, and H. Shi, “Studies of Activated Carbons in Double-Layer Capacitors”, J. Power Sources 74, 99, 1998.
    7.Jannakoudakis PD, Pagalos N. Electrochemical Characteristics of Anodically Prepared Conducting Polyaniline Film on Carbon Fiber Supports. Synthetic Metals 1994; 68, 17-31.
    8.Lin B, Sureshkumar R, Kardos JL. Electropolymerization of Pyrrole on PAN-based Carbon Fibers: Experimental observation and a Multiscale Modeling Approach. Chemical Engineering Science 2001; 56, 6563-6575.
    9.Park JH, Park OO. Hybrid Electrochemical Capacitors Based on Polyaniline and Activated Carbon Electrodes. Journal of Power Sources 2002; 111, 185-190.
    10.L. Henning, H. Ole, Organic electrochemistry, p. 389, Dekker / Plenum Publishers, New York, 2001.
    11.S. Maeda, D.B. Cairns, S.P. Armes, “New Reactive Polyelectrolyte Stabilizers for Polyaniline Colloids”, Eur. Polym. , 3, 245-253, 1997.
    12.G. Passch, P.H. Nguyen, A.J. Fisher, “Potential Dependence of Polaron and Bipolaron Densities in Conducting Polymers: Theoretical Description Beyond the Nernst Equation”, Chemical Pyisics, 227, 219-241, 1998.
    13.H. Marsh, Sciences of Carbon Materials, Universidad de Alicante/Secretariado de Publishers, New York, 2000.
    14.S. C. Bennett, D. J. Johnson, R. Murray, “ Structural Models Proposed for HT PAN-based Carbon Fibers”, Carbon, 14, p117, 1976.
    15.X. Bourrat, A. L. Schunk, “Structure of Mesophase Pitch-based Carbon Fibers”, European Carbon Conference, 1996.
    16.E. Genies, J. Penneau, M. Lapkowski, A. Boyle, “ The capacitance enhancement of Composited Carbon Electrodes ”, J. Electrochemical. Chem, 63, 269, 1989.
    17.A. J. Bard, and L. R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996.
    18.柯文賢編著, 腐蝕及其防制, 全華科技圖書股份有限公司, 1994.
    19.D. M. Ruthven, Principles of Adsorption and Adsorption Process John Wiley & Sons: New York, 1984.
    20.D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press: London, 1998.
    21.吾浩青等編著, 電化學動力學, 科技圖書股份有限公司, 2001.
    22.C. Sheng-Yu, P. Su-Moon, “ Electrichemistry of Conductive polymers ⅩⅩⅢ: Polyaniline Growth Studied by Electrochemical Quartz Crystal Microblance Measurements”, Synthetic Metals, 105, 91-98, 1999.
    23.A. J. Bard, and L. R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996.
    24.S. J. Gupta, K. S. Sing, Adsorption Surface and Porosity, Academic Press, London, 1982.
    25.S. Lowell, J. Shields, J. E. Power Surface Area and Porosity, 3rded, Chapman & Hall: London 1991.
    26.Ruthven, D. M. Principles of Adsorption and Adsorption Process John Wiley & Sons: New York 1984.
    27.Do, D. D. Adsorption Analysis: Equilibria and Kinetics, Imperial College Press: London 1998.
    28.D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5thed, Saunders College Publishing, US 1997.
    29.Nava Derakhshan, Comparison of Activated Carbons and Clays for the Removal of Organic Contaminants from Water, 1992.
    30.G. L. Aranovich, M. D. Donohue, “Multilayer Adsorption of Slightly Soluble Organic Compounds from Aqueous Solutions”, J.Colloid and Interface Science 178, 764-769, 1996.
    31.H. Okamoto, M. Okamoto, T. Kotaka, “ Structure Development in Polyaniline Films During Electrochemical Polymerization. Ⅱ: Structure and Properties of Polyaniline Films Prepared via Electrochemical Polymerization”, Polymer Vol, 39, pp. 4359-4367, 1998.
    32.Z. Mandic, L. Duic, F. Kovacicek, “The Influence of Counter-ion on Nucleation and Growth of Electrochemically Synthesized Polyaniline Film”, Electrochemica Acta, Vol42 No 9, 1389-1402, 1997.
    33.L. Duic, Mandic, S. Kovac, “The Electrochemical Properties of Carbon Fibers ”, Electrochim. Acta, 40,1681.
    34.V. Barsukov, S. Chivikov, “ The Capacitor Concept of The Current-Producing Process Mechanism in Polyaniline-type Conducting Polymer”, Electrochemica Acta, 41, 1773-1779, 1996.
    35.S. Gostauto, “ Electrochemical Stability of Polyaniline”, European Polymer Jouranl, 38, 1947-1952.
    36.R. Schrebler, H. Gomez, R. Cordova, L. M. Gassa, J. R. Vilche, “ Study of the Aniline Oxidation Process and Characterization of Pani Films by Electrochemical Impedance spectroscopy”, Synthetic Metals, 93, 187-192, 1998.
    37.T. F. Otero, I. Boyano, “ Potertiostatic Oxidation of Polyaniline under Conformation Relaxation Control: Experimental and Theoretical Study”, J. Phys. Chem. B, 107, 4269-4276, 2003.
    38.M. Shaolin, C. Chuanxiang, S. Yujun, “Green Synthesis of Polyaniline”, Chemistrymag, 3, 26, 2001.
    39.Lindfors T, Ivaska A. pH Sensitivity of Polyaniline and It’s substituted Derivatives. Journal of Electroanalytical Chemistry 2002; 531, 43-52.
    40.Kraljic M, Mandic Z, Duic LJ. Inhibition of Steel Corrosion by Polyaniline Coatings. Corrosion Science 2003; 45, 181-198.
    41.Robberg K, Paasch G, Dunsh L, Ludwig S. The Influence of Porosity and the Nature of the Charge Storge Capacitance on the Impedance Behaviour of Electropolymerized Polyaniline Films. Journal of Electroanalytical Chemistry 1998; 443, 49-62.
    42.X. Liu and T. Osaka, J. Electrochem. Soc., 144, 3066,1997.
    43.S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, J. Electrochem. Soc., 147, 2507, 2000.
    44.Nian, Y.-R. and Teng, H., “Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance”,Journal of Electrochemical Society, in Press, 2002.
    45.B. E. Conway, Electrochemical Supercapacitors, p. 229, Kluwer Academic / Plenum Publishers, New York, 1999.
    46.M. Kaneko, K. Kaneto, “Electrochemomechanical deformation of polyaniline films doped with self-existent and giant anions”, Reactive & Fuctional Polymers,c 37, 155-161, 1998.
    47.J. R. Miller, in Electrochemical Capacitors, F. M. Delnick and M. Tomkiewicz, Editors, PV 95-29, p. 246, The Electrochemical Society Series, Pennington, NJ 1996.
    48.S. Lowell, and J. E. Shields, Powder Surface Area and Porosity, 3rd ed.; Chapman & Hall: London, 1991.
    49.H. Okamoto, T. Kotaka, “ Structure and Properties of Polyaniline Films Prepared via Electrochemical Polymerization. Ⅰ:Effect of pH in electrochemical Polymerization Media on the Primary Structure and acid dissociation Constant of Product Polyaniline Films”, Polymer, 39, 4249-4358, 1998.

    下載圖示 校內:2004-07-28公開
    校外:2004-07-28公開
    QR CODE