| 研究生: |
鐘筠凱 Chung, Yun-Kai |
|---|---|
| 論文名稱: |
電動車用雙向非接觸式感應充電墊系統研製 Design and Implementation of Bidirectional Contactless Inductive Charging Pad System for Electric Vehicles |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 電動車 、感應充電墊 、雙向電能傳輸 、非接觸式電能傳輸 |
| 外文關鍵詞: | electric vehicles, inductive charging pad, bidirectional power transmission, contactless power transfer |
| 相關次數: | 點閱:116 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對電動車長時間停放於公司,研製電動車用雙向非接觸式感應充電墊,系統僅須在電動車離開前充足電能,而在充電過程中可以提供電能作為電能調度。本文首先探討常見激勵電源架構,以雙向全橋電路作為激勵電源,並由數位訊號處理器產生互補式PWM訊號激勵全橋驅動電路。接著以雙埠式網絡分析諧振網絡,從轉移函數的角度針對不同架構之特性進行相互比較,探討諧振網絡的諧振點與輸入阻抗,再推導出輸入阻抗與輸出功率公式,最後選擇LCC諧振網絡作為此系統諧振架構,以提升感應電能傳輸能力以及效率。接續設計降壓式充電電路對磷酸鋰鐵電池模組充電,搭配電壓與電流感測電路,並使用數位訊號處理器撰寫程式實現定電流-定電壓充電法。感應充電墊系統為對稱結構,因此可直接由電池模組放電,實現反向電能傳輸。最後經實驗量測結果,在間距7公分下,系統最高傳輸功率為450.18 W,系統最高效率為69.1%。
The thesis is aimed to design the long-term parking of electric vehicles in the company. The bidirectional contactless inductive charging pad system can provide the energy as the energy dispatching during the charging time. This system uses a bidirectional full-bridge circuit as the excitation power supply. Complementary PWM signals are generated by a digital signal processor to excite the full-bridge drive circuit. Then, two-port network is used to analyze the resonant circuit topologies. We discuss the resonance point and input impedance, and derive the formula of input impedance and output power. LCC resonant network is selected to improve the inductive power transfer capability and efficiency. We design a buck charging circuit to charge the lithium iron phosphate battery module, and use a digital signal processor to realize the constant-current constant-voltage charging method. The inductive charging pad system structure is symmetrical, so it can be directly discharged by the battery module to achieve reverse power transmission. Finally, through experimental measurements, the maximum transmission power of the system is 450.18 W, and the highest transmission efficiency of system is 69.1% with a 7 cm air gap.
[1] A. Zaheer, D. Kacprzak, and G. A. Covic, "A bipolar receiver pad in a lumped IPT system for electric vehicle charging applications,” in Proc. IEEE ECCE’12, 2012, pp. 283-290.
[2] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
[3] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC, 2008, pp. 4320-4325.
[4] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC, 2005, vol. 2, pp. 1133-1136.
[5] J. M. Barnard, J. A. Ferreira, and J. D. Van Wyk, “Optimising sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC, 1995, pp. 245-251.
[6] I. J. Yoon and H. Ling, “Realizing efficient wireless power transfer using small folded cylindrical helix dipoles,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 846-849, 2010.
[7] J. Schneider. (2012, Jan). SAE J2954 overview and path forward. U.S.A. [Online]. Available: http://www.sae.org/smartgrid/sae-j2954-status_1-20 12.pdf.
[8] A. Llombart, J. L. Villa, J. Sallan, and J. F. Sanz Osorio, “High-misalignment tolerant compensation topology for ICPT systems,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 945-951, Feb. 2012.
[9] R. Itoh, H. Matsumoto, Y. Neba, and K. Ishizaka, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[10] G. A. Covic and O. H. Stielau, “Design of loosely coupled inductive power transfer systems,” in Proc. IEEE PowerCon, 2000, pp. 85-90.
[11] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.
[12] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[13] C. Y. Huang, J. T. Boys, and G. A. Covic, “LCL pickup circulating current controller for inductive power transfer systems,” IEEE Trans Power Electron., vol. 28, no. 4, pp. 2081-2093, Apr. 2013.
[14] C. S. Wang, G. A. Covic, and O. H. Stielau, “A investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 9, no. 4, pp. 995-1002, Jul. 2004.
[15] M. Soljacic, P.Fisher, A. Kurs, A. Karalis, R. Moffatt, and J. D. Joannopoulos, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83-85, 2007.
[16] M. Budhia, J. T. Boys, and G. A. Covic, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[17] M. Budhia, J. T. Boys, and G. A. Covic, “Design and optimisation of magnetic structures for lumped inductive power transfer systems,” in Proc. IEEE ECCE’09, 2009, pp. 2081-2088.
[18] M. L. G. Kissin, D. Kacprzak, N. Clausen, H. Hao, and G. A. Covic, “A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling,” in Proc. IEEE ECCE, 2011, pp. 1832-1838.
[19] M. Budhia, G. A. Covic, J. T. Boys, and C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, Jan. 2013.
[20] H. H. Wu, A. Gilchrist, K. D. Sealy, and D. Bronson, “A high efficiency 5 kW inductive charger for EVs using dual side control,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 585-595, Aug. 2012.
[21] H. H. Wu, A. Gilchrist, K. D. Sealy, and D. Bronson, “A 90 percent efficient 5kW inductive charger for EVs,” in Proc. IEEE ECCE, 2012, pp. 275-282.
[22] 胡至欣,“電動車變行動電源!台電V2G雙向充電站開放免費使用”東森新聞雲,2021年。[Online]. Available at: https://finance.ettoday.net/news/2051735.
[23] U. K. Madawala and D. J. Thrimawithana, “A bidirectional inductive power interface for electric vehicles in V2G systems,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4789-4796, Oct. 2011.
[24] L. Zhao, D. J. Thrimawithana, and U. K. Madawala, “A comparison of LCL and LC bi-directional inductive power transfer systems,” in Proc. PEAC, 2014, pp. 766-771.
[25] D. J. Thrimawithana, U. K. Madawala, and M. Neath, “A synchronization technique for bidirectional IPT systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 301-309, Jan. 2013.
[26] H. L. Jou, J. C. Wu, K. D. Wu, and C. Y. Kuo, “Bidirectional DC–DC wireless power transfer based on LCC-C resonant compensation,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2310-2319, Feb. 2021.
[27] A. A. S. Mohamed, A. Berzoy, and O. A. Mohammed, “Experimental validation of comprehensive steady-state analytical model of bidirectional WPT system in EVs applications,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5584-5594, July 2017.
[28] A. A. S. Mohamed, A. Berzoy, and O. Mohammad, “Magnetic design considerations of bidirectional inductive wireless power transfer system for EV applications,” in Proc. CEFC, 2016, p. 1.
[29] A. A. S. Mohamed, A. Berzoy, F. G. N. de Almeida, and O. Mohammed, “Modeling and assessment analysis of various compensation topologies in bidirectional IWPT system for EV applications,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4973-4984, Oct. 2017.
[30] S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: an overview,” IEEE Access, vol. 7, pp. 117997-118019, 2019.
[31] 王志方,磷酸鋰鐵電池之產業概況,IBT,2008年11月。
[32] 許家興,電動車電池類型與電池基礎介紹,車輛研究資訊,2009年10月。
[33] D. J. Thrimawithana and U. K. Madawala, “A generalized steady-state model for bidirectional IPT systems,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4681-4689, Oct. 2013.
[34] Y. Yao, Y. Wang, X. Liu, F. Lin, and D. Xu, “A novel parameter tuning method for a double-sided LCL compensated WPT system with better comprehensive performance,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8525-8536, Oct. 2018.
[35] M. Borage, S. Tiwari, and S. Kotaiah, “Analysis and design of an LCL-T resonant converter as a constant-current power supply,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1547-1554, Dec. 2005.
[36] M. L. G. Kissin, C. Huang, G. A. Covic, and J. T. Boys, “Detection of the tuned point of a fixed-frequency LCL resonant power supply,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1140-1143, April 2009.
[37] Chwei-Sen Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995-1002, July 2004.
[38] Q. Mao, J. Deng, S. Wang, and Z. Wang, “A detuned LCC-LCC compensation topology with coupling variation resisting for EV wireless charger,” in Proc. IPEMC2020-ECCE Asia, 2020, pp. 96-100.
[39] S. Li, W. Li, J. Deng, T. D. Nguyen, and C. C. Mi, “A double-sided LCC compensation network and its tuning method for wireless power transfer,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2261-2273, June 2015.
[40] Q. Zhu, L. Wang, Y. Guo, C. Liao, and F. Li, “Applying LCC compensation network to dynamic wireless EV charging system,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6557-6567, Oct. 2016.
[41] W. Li, H. Zhao, J. Deng, S. Li, and C. C. Mi, “Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers,” IEEE Trans. Veh. Technol. vol. 65, no. 6, pp. 4429-4439, June 2016.
[42] G. Zheng, P. Zhao, H. Li, and M. Fu, “small-signal model of an inductive power transfer system using LCC–LCC compensation,” IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 1201-1210, Jan.-Feb. 2022.
[43] J. Deng, W. Li, T. D. Nguyen, S. Li, and C. C. Mi, “Compact and efficient bipolar coupler for wireless power chargers: design and analysis,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6130-6140, Nov. 2015.
[44] J. Deng, Q. Mao, W. Wang, L. Li, Z. Wang, S. Wang, and G. Guidi, ”Frequency and parameter combined tuning method of LCC–LCC compensated resonant converter with wide coupling variation for EV wireless charger,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 1, pp. 956-968, Feb. 2022.
[45] IR2110 Data Sheet, International Rectifier Inc., 2004.
[46] IXTQ36N50P Data Sheet, IXYS Inc., 2004.
[47] DSEP30-06A Data Sheet, IXYS Inc., 2016.
[48] HX 15-P Data Sheet, LEM, 2014.
[49] dsPIC30F4011 Data Sheet, Microchip Technology Inc., 2005.
[50] 周彥成,具多環交疊型感應耦合結構之非接觸式電動車充電平台,國立成功大學電機工程學系碩士論文,2014年。
[51] 蔡霈裕,多環交疊型無線充電平台之優化設計,國立成功大學電機工程學系碩士論文,2015年。
[52] 范嘉玲,應用CAN Bus架構於電池電源模組系統之控制,國立成功大學電機工程學系碩士論文,2019年。
[53] 陳柏元,電動載具用三埠式電能管理系統,國立成功大學電機工程學系碩士論文,2019年。
[54] 曾麒睿,無線電能傳輸系統之諧振網絡特性研究,國立成功大學電機工程學系碩士論文,2020年。
[55] 温宗庭,具改良E型雙槽口電能拾取器之非接觸式條帶狀感應供電軌道系統,國立成功大學電機工程學系碩士論文,2020年。
[56] 吳鴻毅,跨金屬屏障之無線電能傳輸系統研究,國立成功大學電機工程學系碩士論文,2021年。
[57] 曾百由,dsPIC數位訊號控制器原理與應用MPLAB C30開發實務,宏友圖書開發股份有限公司,2007年。
校內:2027-08-05公開