簡易檢索 / 詳目顯示

研究生: 麥肯德
Manikandan, Palanichamy
論文名稱: 低功率並行二元及三元內容可定址記憶體之設計
Design of Low Power Fully Parallel Binary and Ternary Content Addressable Memories
指導教授: 劉濱達
Liu, Bin-Da
邱瀝毅
Chiou, Lih-Yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 84
中文關鍵詞: 記憶體定址低功率
外文關鍵詞: search speed, binary and ternary, CAM, Low power
相關次數: 點閱:66下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文提出新穎的積體電路架構為並行靜態二元及三元內容可定址記憶體,且採用低功率和高彈性的內容可定址記憶體架構。此架構克服缺點且具有單一位元線和雙位元線的優點。本論文所提出的低功率二元及三元內容可定址記憶體的配對線架構具備反及閘的低靜態消耗功率,虛擬N型金氧半電晶體的高速運算,以及互補式金氧半電晶體的低消耗功率和低成本。
    本研究利用0.18 m製程實現128×32二元內容可定址記憶體,其HSPICE模擬結果顯示所提出的架構功率在1.8 V電壓供應和延遲時間2.02 ns下,消耗功率為3.94 mW。晶片模擬結果,虛擬互補式金氧半電晶體的128×32二元內容可定址記憶體在0.18 m製程技術下,提升了76%搜尋速度和降低65%消耗功率。
    此外,也利用0.13 m製程技術實現64×128三元內容可定址記憶體,具有先進局部搜尋線控制,其HSPICE模擬結果顯示,在1.2 V電壓供應和延遲時間6.06 ns下,消耗功率為2.04 mW。所提出的三元內容可定址記憶體架構減少了26%的功率消耗和增進了23%的搜尋速度。

    This thesis presents a novel VLSI architecture for fully parallel static type binary and ternary content addressable memories (BCAM and TCAM) with low power and high flexibility features by using novel CAM cell structures. The proposed CAM core cell structures eliminate the drawbacks and adapt the advantages of single bit line and dual bit line cell structures. In this work, the word match line (ML) structure of low power BCAM and TCAM adapts the proposed NAND based static pseudo CMOS (NPC) logic and static pseudo CMOS (PC) logic respectively which comprises the advantages of NAND structure such as low static power, pseudo NMOS logic such as high speed operation and CMOS logic such as low power and low cost. HSPICE simulations for 128×32 BCAM systems were performed with 0.18 m technology and the result shows that the proposed design provides the power dissipation of 3.94 mW with the delay time of 2.02 ns under 1.8 V supply voltage. The measurement results of 128×32 PC-BCAM (under 0.18 m CMOS technology) shows that the proposed BCAM cell reduces 76% of power dissipation and improves 65% of search speed. Further more, spice simulations were carried out for 64×128 TCAM systems with advanced local search line control (LSC) technique under 0.13 m technology which shows that the proposed design gives the power dissipation of 2.04mw with the delay time of 6.06 ns under 1.2 V supply voltage. In 64×128 TCAM, proposed TCAM cell reduces 26% of power dissipation and improves about 23% of search speed.

    Table of Contents Table of Contents ...................................i List of Figures......................................iv List of Tables.......................................vi Chapter 1 Introduction.................................1 1.1 Basic Idea of CAM..................................1 1.2 Motivation of the Work.............................3 1.3 Organization of the Thesis.........................6 Chapter 2 Low Power CMOS Logic and CAM Core Cells......7 2.1 CMOS Logic Design Styles...........................7 2.1.1 Static CMOS logic................................7 2.1.2 Pseudo NMOS logic...............................11 2.1.3 Dynamic logic...................................12 2.2 Basic Operation Principle of CAM .................16 2.3 Different Types of CAM Core Cells................17 2.3.1 NOR and NAND types of binary CAM core cells....18 2.3.2 Modified binary CAM core cells .................21 2.3.3 Single bit line CAM cell structures.............24 2.3.4 Ternary CAM core cells..........................25 2.4 Basic Idea of Matchline Structure.................26 2.4.1 Equivalent circuit model of match line and its delay ............................................ 26 2.4.2 Applications of CAM.............................27 Chapter 3 Low Power Design Solutions and Word Matchline Techniques............................................29 3.1 Matchlines and Searchlines with CAM cell Array....30 3.1.1 NOR type word line structure....................30 3.1.2 NAND type word line structure...................31 3.1.3 NAND-NOR type word line structure...............32 3.1.4 Charge injection and current saving based word line structure .............................................33 3.1.5 PB based pseudo NMOS type word line structure...35 3.1.6 AND type word line structure....................36 3.2 Low Power Design Solutions........................37 3.2.1 Low swing technique.............................38 3.2.2 Current race technique..........................39 3.2.3 Selective precharge technique...................40 3.2.4 Pipe lined technique............................41 3.2.5 Current saving control (CSC) technique..........42 Chapter 4 Proposed Binary and Ternary CAM Cell Structures with NPC Wordline Structure...........................43 4.1 Proposed CAM Cells Structure......................44 4.1.1 Entire CAM system...............................44 4.1.2 Proposed BCAM cells.............................45 4.1.3 Proposed TCAM cells.............................49 4.1.4 BCAM and TCAM cells - Transistors sizing........51 4.2 Matchline Sensing Scheme..........................52 4.2.1 Pseudo CMOS (PC) logic..........................53 4.2.2 Proposed NAND based PC logic (NPC) structure....55 4.3 Searchline Control Technique......................57 4.3.1 Local Search line Control (LSC) logic...........57 4.4 Simulation Results................................61 4.4.1 Simulation results at different pValue..........62 4.4.2 Simulation results for Power-Performance – 32×32 binary CAM............................................63 4.4.3 Simulation results for Power-Performance – 128×32 binary CAM............................................65 4.4.4 Simulation results for Power-Performance – 64×128 ternary CAM...........................................67 4.4.5 Functionality verification......................69 4.4.6 Critical speed / delay measurement..............70 4.4.7 Summary and comparison of the reported designs..73 4.5 Discussions.......................................74 Chapter 5 Conclusions and Future Work.................75 5.1 Conclusions.......................................75 5.3 Future directions.................................77 References............................................78 Publications and Award................................84

    [1] C. S. Lin, “Design of low-power fully parallel content adressable memories,” Ph.D. dissertation, National Cheng Kung University, Tainan, Taiwan, June 2004.
    [2] T. Jamil, “RAM versus CAM,” IEEE Potentials, vol. 16, pp. 26-29, Apr.-May, 1997.
    [3] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits and architectures: a tutorial and survey,” IEEE J. Solid-State Circuits, vol. 41, pp. 712-727, Mar. 2006.
    [4] K. J. Schultz, “Content-addressable memory core cells: A survey,” Integration: the VLSI J., vol. 23, pp. 171-188, Nov. 1997.
    [5] A. Efthymiou and J. D. Garside, “A CAM with mixed serial-parallel comparison for use in low energy caches,” IEEE Trans. VLSI Syst., vol. 12, pp. 325-329, Mar. 2004.
    [6] T. Ikenaga and T. Ogura, “A fully-parallel 1 Mb CAM LSI for real-time pixel-parallel image processing,” IEEE J. Solid-State Circuits, vol. 35, pp. 536-544, Apr. 2000.
    [7] K. J. Lin, C. W. Wu, and S. Member, “A low-power CAM design for LZ data compression,” IEEE Trans. Comput., vol. 49, pp. 1139-1145, Oct. 2000.
    [8] H. Miyatake, M. Tanaka, and Y. Mori, “A design for high-speed low-power CMOS fully parallel content-addressable memory macros,” IEEE J. Solid-State Circuits, vol. 36, pp. 956-968, June 2001.
    [9] M. Sumita, “A 800 MHz single cycle access 32 entry fully associative TLB with a 240 ps access match circuit,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2001, pp. 231-232.
    [10] J. H. Lee, G. H. Park, S. B. Park, and S. D. Kim, “A selective filter-bank TLB system [embedded processor MMU for low power],” in Proc. Int. Symp. Low-Power Electron. Design, Aug. 2003, pp. 312-317.
    [11] Z. Liang, J. Wu, and K. Xu, “A TCAM-based IP lookup scheme for multi-nexthop routing,” in Proc. IEEE Int. Conf. Comp. Networks Mob. Comput., Oct. 2003, pp. 128-135.
    [12] F. Zane, N. Girija, and A. Basu, “Coolcams: power-efficient TCAMs for forwarding engines,” in Proc. IEEE INFOCOM, Mar. 2003, pp. 42-52.
    [13] T. Matsuda and K. Matsuda, “A new protocol processing architecture for high-speed networks,” in Proc. IEEE Global Telecommun. Conf., Nov. 1996, pp. 798-803.
    [14] S. V. Kartalopoulos, “Associative RAM-based CAM applicable to packet-based broadband systems,” in Proc. IEEE Global Telecommun. Conf., Nov. 1998, pp. 2888-2891.
    [15] K. J. Schultz and P. G. Gulak, “CAM-based single-chip shared buffer ATM switch,” in Proc. IEEE Int. Conf. Commun., May 1994, pp. 1190-1195.
    [16] C. S. Lin and B. D. Liu, “Design of a shared buffer management scheme for ATM switches,” in Proc. 15th Annual IEEE Int. ASIC/SOC, Sept. 2002, pp. 261-264.
    [17] S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design. New York : McGraw-Hill, 1996.
    [18] F. J. Kurdahi, “Dynamic CMOS Circuits,” Introduction to VLSI Design, University of California, Irvine, ECE151, Fall 1995. Available: http://www.eng.uci.edu/ece/ece151/lec4/dynamic.html
    [19] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design. Reading, MA : Addison-Wesley, 2001.
    [20] K. J. Schultz, F. Shafai, G. F. R. Gibson, A. G. Bluschke, and D. E. Somppi, “Fully parallel 25 MHz, 2.5-Mb CAM,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1998, pp. 332-333.
    [21] M. Ito, K. Kawasaki, N. Yoshikawa, A. Fujimaki, H. Terai, and S. Yorozu, “20 GHz operation of bit-serial handshaking systems using asynchronous SFQ logic circuits,” IEEE Trans. App. Superconduct., vol. 15, pp. 255-258, June. 2005.
    [22] E. Macii and M. Poncino, “Power consumption of static and dynamic CMOS circuits: a comparative study,” in Proc. IEEE 2nd Int. Conf. ASIC, Oct.1996, pp. 425-427.
    [23] C. Terman, “Precharge/Evaluate Logic,” Introduction of VLSI Systems, Massachusetts Institute of Technology, Class 6.371, Fall 1996. Available: http://cerberus.lcs.mit.edu/6.371/lectures/L9/
    [24] C. H. Kim, J. J. Kim, S. Mukhopadhyay, and K. Roy, “A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations,” in Proc. Int. Symp. Low-Power Electron. Design, Aug. 2003, pp. 6-9.
    [25] J. F. Wakerly, Digital Design: Principles and Practices. Eaglewood Cliffs, NJ : Prentice-Hall, 2001.
    [26] E. Brunvand, S. Nowick and K. Yun, “Practical advances in asynchronous design,” in Proc. IEEE Comp. Design. Conf., Oct. 1997, pp. 662-668
    [27] Yuan, J. and C. Svensson, “New single-clock CMOS latches and flipflops with improved speed and power savings,” IEEE J. Solid-State Circuits, vol. 32, pp. 62-69, Jan. 1997.
    [28] S. V. Kartalopoulos, “An associative RAM-based CAM and its application to broad-band communications systems,” IEEE Trans. Neural Networks, vol. 9, pp. 1036-1041, Sept. 1998.
    [29] G. Thirugnanam, N. Vijaykrishnan, and M. J. Irwin, “A novel low power CAM designs,” in Proc. IEEE Int. ASIC/SOC Conf., Sept. 2001, pp. 198-202.
    [30] S. Liu, F. Wu, and J. B. Kuo, “A novel low-voltage content-addressable memory (CAM) cell with a fast tag-compare capability using partially depleted (PD) SOI CMOS dynamic-threshold (DTMOS) techniques,” IEEE J. Solid-State Circuits, vol. 36, pp. 712-716, Apr. 2001.
    [31] V. Chaudhary and L. T. Clark, “Low-power high-performance nand match line content addressable memories,” IEEE Trans. VLSI Syst., vol. 14, pp. 895-905, Aug. 2006.
    [32] C. S. Lin, K. H. Chen, and B. D. Liu, “Low-power and low-voltage fully parallel content-addressable memory,” in Proc. IEEE Int. Symp. Circuits Syst., May 2003, pp. 373-376.
    [33] C. S. Lin, J. C. Chang, and B. D. Liu, “A low-power precomputation-based fully parallel content-addressable memory,” IEEE J. Solid-State Circuits, vol. 38, pp. 654-662, Apr. 2003.
    [34] I. Hong, D. Kirovski, G. Qu, M. Otkonjak and M. B. Srivasta, “Power optimization of variable voltage core-based systems,” in Proc. ACM/IEEE Design Autom. Conf., June 1998, pp. 176-181.
    [35] J. M. Rabaey, M. Pedram, Low Power Design Methodologies. Boston, MA : Kluwer Academic, 1996.
    [36] Y. J. Chang, Y. H. Liao and S. J. Ruan, “Improve CAM power efficiency using decoupled match line scheme,” in Proc. Eur. Conf. Design Automat., Apr. 2007, pp. 1-6.
    [37] V. Lines, A. Ahmed, P. Ma, R. M. Kenzie, H. S. Kim and C. Mar, “66 MHz 2.3 M ternary dynamic content addressable memory,” in Proc. IEEE Int. Workshop Memory Tech., Des. Test, Aug. 2000, pp. 101-105.
    [38] H. Noda, K. Inoue, H. J. Mattausch, T. Koide, and K. Arimoto, “A cost-efficient dynamic ternary CAM in 130 nm CMOS technology with planar complementary capacitors and TSR architecture,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 83-84.
    [39] H. Noda, K. Inoue, M. Kuroiwa, A. Amo, A. Hachisuka, H. J. Mattausch, T. Koide, S. Soeda, K. Dosaka and K. Arinnoto, “A 143 MHz 1.1 W 4.5 Mb dynamic TCAM with hierarchical searching and shift redundancy architecture,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2004, pp. 208-209.
    [40] K. Pagiamtzis and A. Sheikholeslami, “Pipelined match-lines and hierarchical search-lines for low-power content-addressable memories,” in Proc. IEEE Cust. Int. Circuits Conf, Sept. 2003, pp. 383-386
    [41] G. Kasai, Y. Takarabe, K. Furumi, and M. Yoneda, “200 MHz/200 MSPS 3.2 W at 1.5 V Vdd, 9.4 Mbits ternary CAM with new charge injection match detect circuits and bank selection scheme,” in Proc. IEEE Cust. Int. Circuits Conf, Sept. 2003, pp. 387-390.
    [42] K. H. Cheng, C. H. Wei, and S. Y. Jiang, “Static divided word matchline line for low-power content addressable memory design,” in Proc. IEEE Int. Symp. Circuits Syst., May 2004, pp. 629-632.
    [43] J. Zhang, Y. Ye and B. D. Liu, “A Low-power technique based on charge injection and current-saving methods for match-line sensing in content-addressable memories,” in Proc. Asia-Paccific Conf. Circuits Syst., Dec. 2006, pp. 1293-1296
    [44] K. H. Cheng, C. H. Weil and Y. W. Chen, “Design of low power content addressable memory cell,” in Proc. IEEE MWSCAS, Dec. 2003, pp. 1447-1450.
    [45] C. Mead and L. Conway, Introduction to VLSI systems. Reading, MA: Addison-Wesley, 1980.
    [46] J. S. Wang, H. Y. Li, C. C. Chen, and C. Yeh, “An AND type match-line scheme for energy efficient content addressable memories,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005, pp. 464-465.
    [47] G. Kasai, Y. Takarabe, K. Furumi and M. Yoneda, “200MHz/200MSPS 3.2W at 1.5V Vdd, 9.4Mbits ternary CAM with new charge injection match detect circuits and bank selection scheme,” in Proc. IEEE Cust. Int. Circuits Conf, Sept. 2003, pp 387-390.
    [48] I. Arsovski, T. Chandler and A. Sheikholeslami, “A ternary content-addressable memory (TCAM) based on 4T static storage and including a current-race sensing scheme,” IEEE J. Solid-State Circuits, vol. 38, pp. 155-158, Jan. 2003
    [49] C. A. Zukowski and S. Y. Wang, “Use of selective precharge for low-power on the match lines of content-addressable memories,” in Proc. Int. Symp. Memory Tech. Design & Test, Aug. 1997, pp. 64-68
    [50] K. Pagiamtzis and A. Sheikholeslami, “A low-power content-addressable memory (CAM) using pipelined hierarchical search scheme,” IEEE J. Solid-State Circuits, vol. 39, pp. 1512-1519, Sept. 2004
    [51] I. Arsovski and A. Sheikholeslami, “A current-saving match-line sensing scheme for content-addressable memories,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2003, pp. 304-494
    [52] I. Arsovski and A. Sheikholeslami, “A mismatch-dependent power allocation technique for match-line sensing in content-addressable memories,” IEEE J. Solid-State Circuits, vol. 38, pp. 1958-1966, Nov. 2003
    [53] Q. Chen, H. Mahmoodi, S. Bhunia, and K. Roy, “Modeling and testing of SRAM for new failure mechanisms due to process variations in nanoscale cmos,” in Proc. IEEE VLSI Test Symp., May 2005, pp. 292 - 297.
    [54] K. Pagiamtzis and A. Sheikholeslami, “A low-power content-addressable memory (CAM) using pipelined hierarchical search scheme,” IEEE J. Solid-State Circuits, vol. 39, pp. 1512-1519, Sep. 2004.
    [55] H. Y. Li, C. C. Chen, J. S. Wang and C. Yeh, “An AND type match line scheme for high performance energy efficient content addressable memories,” IEEE Trans. Solid-State Circuits, vol. 41, pp. 1108-1119, May 2006.
    [56] J. S. Wang, C. C. Wang, and C. Yeh, “TCAM for IP-address lookup using tree-style AND-type match lines and segmented search lines,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 577-586.
    [57] R. J. Tsai, H. W. Ting, C. S. Lin, and B. D. Liu, “A CAM/WTA-based high speed and low power longest prefix matching circuit design,” in Proc. Asia-Paccific Conf. Circuits Syst., Dec. 2006, pp. 427-430.
    [58] R. J. Tsai, “Design of low-power content-adressable memory and its application in nerwork routers,” M.S. Thesis, National Cheng Kung University, Tainan, Taiwan, Jan 2007.

    下載圖示 校內:2010-07-25公開
    校外:2010-07-25公開
    QR CODE