簡易檢索 / 詳目顯示

研究生: 魯昶甫
Lu, Chang-Fu
論文名稱: 工業用機械手臂運動學參數鑑別與補償研究
Study on Kinematic Parameters Identification and Compensation for Industrial Manipulators
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 151
中文關鍵詞: 機器人校正機器人運動學誤差模型參數補償參數鑑別
外文關鍵詞: Robot Calibration, Kinematics of Industrial Manipulators, Error Model, Parameter Identification, Parameter Compensation
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業4.0的浪潮席捲而來,製造業對於工業型機器人的需求與日俱增,而生產線對於工業型機器人的精度要求也越來越高。有鑑於此,如何有效提升機器人的絕對精度並減少定位誤差為一重要研究課題。現行提升機器人絕對精度的方法不僅皆需使用昂貴儀器,且其操作過程繁瑣,不利於現場人員作業。本論文的主旨在於研究一套高精度、低成本、高便捷的運動學參數鑑別方法,可估算機器人的幾何誤差,並將誤差加以補償,提升工業型機器人的絕對精度。本論文建構了具完備性之運動學,可以有效描述真實世界機器人的幾何誤差,並依照所選定的運動學模型與所設計的低成本治具,推導對應物理約束之相對量誤差模型。本論文藉由資料蒐集並導入誤差模型,利用迴歸參數鑑別方法,鑑別出正確的運動學參數,將參數透過本論文所推導之補償模型,可以有效地將所鑑別之參數補償在機器人的順向與逆向運動學當中,提高絕對精度並降低幾何誤差。此外本論文所使用之治具與資料量測方法,十分方便產線人員操作,降低了操作困難度與時間成本。經過多項模擬與實驗後,本論文已將所發展之技術導入相關產品。根據產線人員實測之結果發現,本論文所發展之低成本、高便捷之運動學參數鑑別技術可有效降低幾何誤差達80%。

    In recent years, issues regarding Industry 4.0 have become very popular topics of interest. In industrial circles, industrial robots are in great demand, while more and more manufacturers are accentuating the accuracy of these industrial robots. Accordingly, robot calibration is a major concern for increasing the absolute accuracy of robots. However, current practices require the use of expensive instruments such as laser trackers, which are difficult to operate. Therefore, the main purpose of this thesis is to discuss robot calibration methods which are low-cost and can be easily operated for decreasing geometric error and increasing absolute accuracy. It is divided into four parts to discuss the issue of robot calibration. The thesis begins by constructing a complete kinematics which can effectively describe the geometric error of real-world robots. According to the selected kinematic model and low-cost devices, we then design methods to derive corresponding error models with physical constraints. Next, we collect the calibration data and substitute it into the regression model to identify the correct kinematic parameters. Finally, the correct kinematic parameters can effectively compensate in forward and inverse kinematics through the compensation model derived from this thesis. The results of calibration simulations and experiments carried out on Delta DRV90L and ITRI 6-dof industrial manipulators show improved accuracy. After simulations and experiments, this thesis also introduces related products which can effectively reduce 80% of geometric error without the need for expensive instruments.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 XVI 目錄 XIX 表目錄 XXII 圖目錄 XXV 第一章、 緒論 1 1.1 研究動機 1 1.2 國內外相關文獻回顧 3 1.3 研究背景 9 1.4 論文貢獻與架構 9 第二章、 工業機械手臂運動學模型建構 12 2.1 區域座標系順向運動學模型 12 2.1.1 DH 運動學模型 12 2.1.2 Improved DH 運動學模型 18 2.1.3 MCPC 運動學模型 20 2.2 全域座標系順向運動學模型 23 2.2.1 POE 順向運動學模型 23 2.3 尤拉角表示法與求解 32 2.4 逆向運動學求解 35 2.5 本章小結 40 第三章、 基於絕對量資訊之運動學誤差模型與參數鑑別方法 41 3.1 資訊取得狀況分析 41 3.2 絕對量資訊取得之誤差模型 45 3.3 最小平方法 49 3.4 Levenberg-Marquardt方法 50 3.5 校正點優選條件數判定 52 3.6 本章小結 54 第四章、 基於相對量資訊之運動學誤差模型推導 55 4.1 牛頓法長度約束誤差模型 55 4.2 牛頓法角度約束誤差模型 60 4.3 相同點消去法誤差模型 65 4.4 向量長度誤差模型 67 4.5 擴增臂誤差模型 69 4.6 本章小結 73 第五章、 逆向運動學誤差補償策略 74 5.1 前置量逆補償方法 74 5.2 SVD逆補償方法 76 5.3 梯度下降逆補償方法 79 5.4 Lagrange Multiplier逆補償方法 80 5.5 解析Jacobian逆補償方法 81 5.6 本章小結 85 第六章、 運動學參數鑑別模擬與實驗 86 6.1 運動學參數鑑別模擬 86 6.1.1 絕對量資訊運動學參數鑑別模擬 86 6.1.2 相對量資訊運動學參數鑑別模擬 101 6.1.3 逆向運動學補償模擬 111 6.2 實驗一:接觸式運動學參數鑑別 117 6.2.1 實驗設備與環境 118 6.2.2 重力補償簡述 121 6.2.3 實驗結果 121 6.3實驗二:非接觸式運動學參數鑑別 129 6.3.1 實驗設備與環境 130 6.3.2 實驗結果 132 6.4 實驗三:工廠實作案例簡述 136 6.4.1 逆補償運算速率比較 137 6.4.2 尖端點校正 137 6.5 本章小結 140 第七章、結論及建議 141 7.1 結論 141 7.2 未來展望與建議 142 參考文獻 144

    [1] 資策會產業情報研究所, “工業機器人未來五年需求穩定看漲,” Internet: https://mic.iii.org.tw/AboutMIC_FirmProfile.aspx, May. 16, 2019.
    [2] 主編的產業研究室, “「四大工業機器人廠商」統治著一半的全球市場,” Internet: https://www.cmoney.tw/notes/note-detail.aspx?nid=158669, May. 16, 2019.
    [3] C.G. Atkeson, C.H. An, and J.M. Hollerbach, “Estimation of inertial parameters of manipulator loads and links,” International Journal of Robotics Research, vol. 5, no. 3, pp. 101-119, Sep. 1986.
    [4] B. Armstrong, “On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics,” International Journal of Robotics Research, vol. 8, no. 6, pp. 28-48, Apr. 1989.
    [5] M. Gautier and W. Khalil, “Exciting Trajectories for the Identification of Base Inertial Parameters of Robots,” International Journal of Robotics Research, vol. 11, no. 4, pp. 362-375, Aug. 1992.
    [6] A. Janot, P.O. Vandanjon, and M. Gautier, “Identification of Physical Parameters and Instrumental Variables Validation With Two-stage Least Squares Estimator,” IEEE Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1386-1393, Jul 2013.
    [7] A. Janot, P.O. Vandanjon, and M. Gautier, “A Generic Instrumental Variable Approach for Industrial Robot Identification,” IEEE Transactions on Control Systems Technology, vol. 22, no. 1, pp. 132-145, Jan. 2014.
    [8] A. Chae, C. Atkeson, J. Griffiths, and J. Hollerbach, “Experimental evaluation of feedforward and computed torque control,” IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 165-168, Jan. 1989.
    [9] J.J.E. Slotine and W. Li, “On the Adaptive control of robot manipulators,” The International Journal of Robotics Research, vol. 6, pp. 49-59, Sep. 1987.
    [10] J.J. Slotine and L. Weiping, “Adaptive manipulator control a case study,” IEEE Transactions on Automatic Control, vol. 33, no.11, pp. 995-1003, Nov. 1988.
    [11] Y. Tang, “Terminal Sliding Mode Control for rigid robots,” Automatica, vol. 34, no. 1, pp. 51–56, Jan. 1998.
    [12] J. J. Slotine and S. S. Sastry, “Tracking control of non-linear systems using sliding surfaces with application to robot manipulators,” International Journal of Control, vol. 38, no. 2, pp. 465-492, Mar. 1983.
    [13] B. Armstrong, “On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics,” International Journal of Robotics Research, vol. 8, no. 6, pp. 28-48, Dec. 1989.
    [14] 台達電子工業股份有限公司, “產品-垂直多關節機器人-DRV90L系列-台達集團,” Internet: http://www.deltaww.com/Products/CategoryListT1.aspx?CID=
    060603&PID=3815&hl=zhTW&Name=DRV90L%E7%B3%BB%E5%88%97, May. 17, 2019.
    [15] 台達電子工業股份有限公司, “產品-水平關節機器人-DRS40L系列-台達集團,” Internet: http://www.deltaww.com/Products/CategoryListT1.aspx?CID=06
    0601&PID=2182&hl=zh-TW&Name=DRS40L%E7%B3%BB%E5%88%97, May. 17, 2019.
    [16] Z.S. Roth and B. W.Mooring, “An overview of robot calibration,” IEEE Journal of Robotics and Automation, vol. RA-3, no. 5, pp. 377-384, Oct. 1987.
    [17] R.P. Judd and A.B. Knasinski, “A technique to calibrate industrial robots with experimental verification,” IEEE Transactions on Robotics and Automation, vol 6, no. 1, pp. 20-30, Feb. 1990.
    [18] C. Gang, L. Tong, C. Ming, J.Q. Xuan, and S.H. Xu, “Review on Kinematics Calibration Technology of Serial Robots,” International Journal of Precision Engineering and Manufacturing, vol 15, no. 8, pp. 1759-1774, Aug. 2014.
    [19] W.K. Veitschegger and C.H. Wu, “Robot Calibration and Compensation,” IEEE Journal of Robotics and Automation, vol. 4, no. 6, pp. 643-656, Dec. 1988.
    [20] B.W. Mooring, “The Effect of Joint Axis Misalignment on Robot Positioning Accuracy,” in Proceedings of ASME International Conference on Computers in Engineering, Chicago, Illionois, 1983, pp. 151-156.
    [21] S.A. Hayati, “Robot Arm Geometric Link Parameter Estimation,” in Proceedings of 22nd IEEE Conference on Decision and Control, San Antonio, USA, 1983, pp.1477-1483.
    [22] H. Zhuang, Z.S.Roth, and F. Hamano, “A Complete and Parametrically Continuous Kinematic Model for Robot Manipulators,” IEEE Transactions on Robotics and Automation, vol. 8, no. 4, pp. 451-463, Aug. 1992.
    [23] H. Zhuang and Z.S.Roth, “A Linear Solution to the Kinematic Parameter Identification of Robot Manipulators,” IEEE Transactions on Robotics and Automation, vol. 9, no. 2, pp. 174-185, Apr. 1993.
    [24] H. Zhuang, L.K. Wang, and Z.S. Roth, “Error-Model-based Robot Calibration using a Modified CPC Model,” Robotics and Computer-Integrated Manufacturing, vol. 10, no. 4, pp. 287-299, Aug. 1993.
    [25] R. He, Y.J. Zhao, S. N. Yang, and S.Z. Yang, “Kinematic-parameter identification for serial-robot calibration based on POE formula,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 411–422, Jun. 2010.
    [26] K. Okamura and F. C. Park, “Kinematic calibration using the product of exponentials formula,” Robotica, vol. 14, no.4, pp. 415-421, Jul. 1996.
    [27] S. Yang, Y. Zhao, R. He, S.Yang, and F. Han, “Experimentation on Identifying the Kinematic Parameters of Serial Mechanism based on the Product-of-Exponential Formula,” Robot, vol. 33, no. 1, pp. 35-39, Dec. 2011.
    [28] T. Xia, H. Sun, J. Han, and J. Yang, “Research of Industrial Robot Calibration based on Virtual Closed Kinematic Chain,” Machine Design and Research, vol. 25, no. 2, pp. 57-59, Feb. 2009.
    [29] C. Lightcap, S. Hamner, T. Schmitz, and S. Banks, “Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 452–456, Apr. 2008
    [30] S. Jung and B. Ravani, “Online Kinematic Jacobian Uncertainty Compensation for Robot Manipulators using Neural Network,” in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, San Diego, USA, 1998, pp. 3483-3488.
    [31] Y. Gan and X.Dai, “Base Frame Calibration for Coordinated Industrial Robots,” Robotics and Autonomous Systems, vol. 59, no. 7, pp. 563-570, Jul. 2011.
    [32] Z.H. Wang, H. Xu, and G.D. Chen, “A distance error based industrial robot kinematic calibration mehod,” Industrial Robot: An International Journal, vol. 41, no. 5, pp. 439-446, Aug. 2014.
    [33] I.C. Ha, “Kinematic Parameter Calibration Method for Industrial Robot Manipulator using the Relative Position,” Journal of Mechanical Science and Technology, vol. 22, no. 6, pp. 1084-1090, Jun. 2008.
    [34] Nubiola, M. Slamani, and I.A. Bonev, “A New Method for Measuring a Large Set of Poses with a Single Telescoping Ballbar,” Precision Engineering, vol. 37, no. 2, pp. 451-460, Apr. 2013.
    [35] Nafi, J. Mayer, and A. Wozniak, “Novel CMM-based Implementation of the Multi-Step Method for the Separation of Machine and Probe Errors,” Precision Engineering, vol. 35, no. 2, pp. 318-328, Apr. 2011.
    [36] J. Santolaria, J.J. Aguilar. J.A. Yagüe, and J. Pastor, “Kinematic Parameter Estimation Technique for Calibration and Repeatability Improvement of Articulated Arm Coordinate Measuring Machines,” Precision Engineering, vol. 32, no. 4, pp. 251-268, Oct. 2008.
    [37] M. Meggiolaro, P. Jaffe, and S. Dubowsky, “Achieving fine absolute positioning accuracy in large powerful manipulators,” in Proceedings of IEEE International Conference on Robotics and Automation, Detroit, USA, 1999, pp. 2819–2824.
    [38] J.U. Dolinsky, ”The Development of a Genetic Programming Method for Kinematic Robot Calibration,” M.A. thesis, Liverpool John Moores University, United Kingdom, 2001.
    [39] H.W. Stone, A.C. Sanderson, and C. Neuman, “Arm signatrue identification,” in Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, USA, 1986, pp. 41-48.
    [40] H.W. Stone and A.C. Sanderson, “Statistical performance evaluation of the S-model arm signatrue identification technique,” in Proceedings of IEEE International Conference on Robotics and Automation, Philadelphia, USA, 1988, pp. 939-946.
    [41] A. Nubiola and I.A. Bonev, “Absolute Calibration of an ABB IRB 1600 Robot using a Laser Tracker,” Robotics and Computer- Integrated Manufacturing, vol. 29, no. 1, pp. 236-245, Feb. 2013.
    [42] M. Meloun, J. Militký, K. Kupka, and R.G. Brereton, “The Effect of Influential Data, Model and Method on the Precision of Univariate Calibration,” Talanta, vol. 57, no. 4, pp. 721-740, Jun. 2002.
    [43] R. Manne, “Analysis of Two Partial-Least-Squares Algorithms for Multivariate Calibration,” Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1, pp. 187-197, Aug. 1987.
    [44] W.K. Newey, “Efficient Instrumental Variables Estimation of Nonlinear Models,” Econometrica: Journal of the Econometric Society, vol. 58, no. 4, pp. 809-837, 1990.
    [45] C.W. Wampler, J.M. Hollerbach, and T. Arai, “An Implicit Loop Method for Kinematic Calibration and its Application to Closed-Chain Mechanisms,” IEEE Transactions on Robotics and Automation, vol. 11, no. 5, pp. 710-724, Oct. 1995.
    [46] Y. Zhang, L. Wang, and Q. Wu, “Differential Annealing for Global Optimization,” Advances in Swarm Intelligence, vol. 7331, pp. 382-389, Jun. 2012.
    [47] A. Rougée, C. Picard, C. Ponchut, and Y. Trousset, “Geometrical Calibration of X-Ray Imaging Chains for Three-Dimensional Reconstruction,” Computerized Medical Imaging and Graphics, vol. 17, no. 4, pp. 295-300, Jul. 1993.
    [48] X.L. Zhong and J.M. Lewis, “A new method for autonomous robot calibration,” in Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995, pp. 21-27.
    [49] D.E. Whitney, C.A. Lozinski, and J.M. Rourke, “Industrial robot forward calibration method and results,” Journal of Dynamic Systems, Measurement, and Control, vol. 108, pp. 1-8, Mar. 1986.
    [50] J.S. Shamma and D. E. Whitney, “A Method for Inverse Robot Calibration,” Journal of Dynamic Systems, Measurement, and Control, vol. 109, pp. 36-43, Mar. 1987.
    [51] S. Hayati, K. Tso, and G. Roston, “Robot geometry calibration,” in Proceedings of IEEE International Conference on Robotics and Automation, Philadelphia, USA, 1988, pp. 24-29.
    [52] W.K. Veitschegger, and C.H. Wu, “Robot Calibration and Compensation,” IEEE Journal on Robotics and Automation, vol. 4, no. 6, Dec. 1988.
    [53] J.U. Dolinsky, I.D. Jenkinson, and G.J. Colquhoun, “Application of genetic programming to the calibration of industrial robots,” Computers in Industry, vol. 58, no. 3, pp. 255-264, Apr. 2007.
    [54] A.C. Reddy, “Difference between Denavit-Hartenberg (D-H) classical and modified conventions for forward kinematics of robots with case study,” International Conference on Advanced Materials and manufacturing Technologies, 2014, pp. 267-286.
    [55] J.M. Selig, Geometric Fundamentals of Robotics, New York:Springer-Verlag, 2005.
    [56] K.S. Fu, R.C. Gonzalez, C.S.G. Lee. ROBOTICS:Control, Sensing, Vision, and Intelligence, McGraw-Hill, 1987.
    [57] S. Kucuk and Z. Bingul, “The inverse kinematics solutions of industrial robot manipulators,” in Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey, 2004, pp. 274-279.
    [58] G. Gao, J. Na, X. Wu, and Y. Guo, “ A self-calibration method for articulated arm coordinate measuring machines,” Transactions of the Canadian Society for Mechanical Engineering, vol. 40, no. 4, 2016.
    [59] E.K.P. Chong and S.H. Zak, An Introduction to Optimization, 4th ed, New York:Wiley India, 2017.
    [60] 線代啟示錄, “條件數,” Internet:https://ccjou.wordpress.com/2010/07/01/%E6
    %A2%9D%E4%BB%B6%E6%95%B8/, Nov. 1, 2018.
    [61] Y. Sun and J.M. Hollerbach, “Active robot calibration algorithm,” in Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, USA, 2008, pp.1276-1281.
    [62] Y. Sun and J.M. Hollerbach, “Observability index selection for robot calibration,” in Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, USA, 2008, pp. 1276-1281.
    [63] A. Nahvi and J.M. Hollerbach, “The noise amplification index for optimal pose selection in robot calibration,” in Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Minneapolis, USA, 1996, pp. 647-654.
    [64] 吳如峰,工業用六軸機械手臂之基於影像視覺伺服架構研究,碩士論文, 國立成功大學電機工程學系,中華民國,2015。
    [65] 馬路科技, ”FARO Laser Tracker雷射追蹤儀,” Internet: https://www.ratc.com.tw/faro%E7%B3%BB%E5%88%97%E4%B8%89%E6%AC%A1%E5%85%83%E9%87%8F%E6%B8%AC%E7%94%A2%E5%93%81/faro-laser-tracker/, Apr. 21, 2019.
    [66] WIEST AG, ” Calibrating and measuring with LaserLAB,” Internet: https://wiest-ag.com/products/laserlab, Mar. 13, 2019.
    [67] 線代啟示錄, “奇異值分解 (SVD),” Internet: https://ccjou.wordpress.com/2009/09/01/%E5%A5%87%E7%95%B0%E5%80%BC%E5%88%86%E8%A7%A3-svd/, May. 1, 2019.
    [68] 台達電子工業股份有限公司, “產品-DMV1000工業用攝影機模組-台達集團,” Internet: http://www.deltaww.com/Products/CategoryListT1.aspx?CID=06
    040101&PID=ALL&hl=zh-TW, May. 15, 2019.

    無法下載圖示 校內:2024-06-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE