| 研究生: |
許茂訓 Hsu, Mao-Hsun |
|---|---|
| 論文名稱: |
具神經成長因子誘發之鼠腎上腺髓質嗜鉻細胞瘤細胞於缺氧情形下之形態分析 The Morphological Analysis of NGF Treated PC12 Cells under Hypoxic Conditions |
| 指導教授: |
鄭國順
Cheng, Kuo-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 細胞培養系統 、細胞影像分析 、鼠腎上腺髓質嗜鉻細胞瘤細胞 |
| 外文關鍵詞: | Cell image analysis, PC12 cells, Incubation system |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
PC12細胞株不僅具有類似神經細胞的型態,而且兼具細胞內氧含量下降之反應特性,因此廣泛地應用在細胞外的缺氧性中風機制研究。本研究的目的主要是發展一套適合PC12細胞觀察應用之即時培養條件監控測系統,和探討在沒有染色的情況下找出有用的參數以分辦細胞的死亡型態;從實驗結果中顯示,本研究所建構的培養系統,在溫度的控制方面可達到37.1 ± 0.5℃,平均相對溼度方面可達到95%,氧氣濃度(5%)的監測可控制在4.88 ± 0.3%,及二氧化碳濃度(5%)的測試值為5.72 ± 0.5%。至於細胞影像分析方面,本研究實現與應用特徵分析參數如核質比、面積、熵值和平均灰階值等參數去量化細胞膜和細胞核;根據單一細胞的分析結果顯示,細胞的凋亡和計畫性死亡型態於實驗開始後13至19個小時期間,可以由一正規化後的域值來區分,分別為膜的熵值(0.29),膜的平均灰階值(0.26),核的面積(0.16),細胞核質比(0.14)。以多細胞的實驗結果顯示,低缺氧(1%)環境對於細胞的傷害大於中缺氧(5%)環境,無萄葡糖培養基和中缺氧的情形比有萄葡糖培養基和中缺氧的情形傷害來得大。
The PC12 cell line has been widely used in stroke related in vitro study, due to its features of neuronal-like morphology and cell-like phenomenon under O2 deprived condition. The purposes of this study are to develop a real-time culturing conditions monitoring system for PC12 application, and to investigate the useful parameters for characterizing the types of cell death with no immunoassay labeling. From the experimental results, it is shown that the temperature, the mean relative humidity, the O2 concentration (5%), and the CO2 concentration (5%) for the proposed culturing system are controlled to be 37.1 ± 0.5℃, 95%, 4.88 ± 0.3%, and 5.72 ± 0.5%, respectively. For the cell image analysis, the feature parameters of the N/C ratio, area, and entropy are realized and applied to quantify the membrane and nucleus of PC12. From the experimental results of single cell continuously monitoring, the apoptosis or necrosis of a cell is differentiated using the thresholds of parameters of the entropy (0.29) and mean gray value (0.26) of membrane, area of nucleus (0.16), and N/C ratio (0.14) after being cultured for 13 to 19 hours. From the experimental results of multiple cells observations, it is shown that the OGD (5% O2) and lower hypoxic (1% O2) conditions would damage the cells more than that of mild hypoxic (5% O2) conditions.
[1] J. H. Garcia, “Experimental ischemic stroke: a review,” Stroke, vol. 15, pp. 5-14, 1984.
[2] L. M. Buja and G. R. F. Krueger, Netter's illustrated human pathology, Icon Learning Systems, Teterboro, NJ, 2005.
[3] L. R. Zhao et al., “Brain repair by hematopoietic growth factors in a rat model of stroke,” Stroke, vol. 38, pp. 2584, 2007.
[4] Z. Pei, S. F. Pang, and R. T. F. Cheung, “Pretreatment with melatonin reduces volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model,” Journal of Pineal Research, vol. 32, pp. 168-172, 2002.
[5] K. Overgaard, et al., “Reduction of infarct volume and mortality by thrombolysis in a rat embolic stroke model,” Stroke, vol. 23, pp. 1167-1173, 1992.
[6] J. A. Zivin and U. DeGirolami, “Spinal cord infarction: a highly reproducible stroke model,” Stroke, vol. 11, pp. 200-202, 1980.
[7] R. I. Freshney, Culture of animal cells: a manual of basic technique, Wiley-Liss, 2005.
[8] L. Khaspekov et al., “Sublethal in vitro glucose-oxygen deprivation protects cultured hippocampal neurons against a subsequent severe insult,” NeuroReport, vol. 9, pp. 1273, 1998.
[9] J. A. Hillion et al., “Development of an ischemic tolerance model in a PC12 cell line,” Journal of Cerebral Blood Flow & Metabolism, vol. 25, pp. 154-162, 2005.
[10] L. A. Greene and A. S. Tischler, “Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor,” Proc. of the National Academy of Sciences of the United States of America, vol. 73, pp. 2424, 1976.
[11] K. A. Seta et al., Responding to hypoxic: lessons from a model cell line, American Association for the Advancement of Science, 2002.
[12] http://www.bcrc.firdi.org.tw/wwwbcrc/index.jsp
[13] S. Shimizu, “Induction of apoptosis as well as necrosis by hypoxic and predominant prevention of apoptosis by Bcl-2 and Bcl-XL,” Cancer Research, vol. 56, pp. 2161-2166, 1996.
[14] D. E. Bredesen, R. V. Rao, and P. Mehlen, “Cell death in the nervous system,” Nature, vol. 443, pp. 796-802, 2006.
[15] Z. T. Schafer and S. Kornbluth, “The apoptosome: physiological, developmental, and Pathological modes of regulation,” Developmental Cell, vol. 10, pp. 549-561, 2006.
[16] J. K. Brunelle and N. S. Chandel, “Oxygen deprivation induced cell death: an update,” Apoptosis, vol. 7, pp. 475-482, 2002.
[17] F. Munoz et al., “Ischemia-induced phosphorylation of initiation factor 2 in differentiated PC12 cells: role for initiation factor 2 phosphatase,” Journal of Neurochemistry, vol. 75, pp. 2335, 2000.
[18] A. Rukenstein, R. E. Rydel, and L. A. Greene, “Multiple agents rescue PC12 cells from serum-free cell death by translation-and transcription-independent mechanisms,” Journal of Neuroscience, vol. 11, pp. 2552, 1991.
[19] R. Tabakman et al., “Neuroprotection by NGF in the PC12 in vitro OGD model: involvement of mitogen-activated protein kinases and gene expression,” Annals of the New York Academy of Sciences, vol. 1053, pp. 84, 2005.
[20] C. L. Ho et al., “Mini chamber system for long-term maintenance and observation of cultured cells,” Biotechniques, vol. 38, pp. 267-73, 2005.
[21] R. Schwartlander, et al., “Continuously microscopically observed and process-controlled cell culture within the slidereactor: proof of a new concept for cell characterization,” Tissue Engineering, vol. 13, pp. 187-196, 2007.
[22] S. M. Potter and T. B. DeMarse, “A new approach to neural cell culture for long-term studies,” Journal of Neuroscience Methods, vol. 110, pp. 17-24, 2001.
[23] C. J. Chien, Development a PC12 cell cultivation and monitoring system, Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, 2007.
[24] Y. L. Fok, J. C. K. Chan, and R. T. Chin, “Automated analysis of nerve-cell images using active contour models,” IEEE Trans. Medical Imaging, vol. 15, pp. 353-368, 1996.
[25] T. D. Pham and D. I. Crane, “Segmentation of neuronal-cell images from stained fields and monomodal histograms,” Proc. 27th Annual Int. Conf. IEEE-EMBS, pp. 6289-6292, 2005.
[26] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, pp. 583-598, 1991.
[27] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” Int. Journal of Computer Vision, vol. 1, pp. 321-331, 1988.
[28] C. Xu and J. L. Prince, “Gradient vector flow: a new external force for snakes,” Proc. IEEE CVPR, 1997.
[29] Y. Y. Wang, et al., “Nerve cell segmentation via multi-scale gradient watershed hierarchies,” Proc. 28th Annual Int. Conf. IEEE-EMBS, 2006.
[30] T. W. Nattkemper, “Automatic segmentation of digital micrographs: a survey,” Proc. 11th World Congr. Medical Informatics (MEDINFO), Pt, vol. 2, pp. 847-851, 2004.
[31] N. Harder et al., “Automated recognition of mitotic patterns in fluorescence microscopy images of human cells,” Proc. 3rd IEEE Int. Symposium on Biomedical Imaging: Macro to Nano, pp. 1016-1019, 2006.
[32] M. Lillholm, M. Nielsen, and L. D. Griffin, “Feature-Based Image Analysis,” International Journal of Computer Vision, vol. 52, pp. 73-95, 2003.
[33] L. Calderilla-Barbosa, A. Ortega, and B. Cisneros, “Phosphorylation of dystrophin Dp71d by Ca2+/calmodulin-dependent protein kinase II modulates the Dp71d nuclear localization in PC12 cells,” Journal of Neurochemistry, vol. 98, pp. 713-722, 2006.
[34] http://ozviz.wasp.uwa.edu.au/~pbourke/texture_colour/convert/
[35] http://www.atcc.org/
[36] http://www.bcrc.firdi.org.tw/wwwbcrc/index.jsp