| 研究生: |
潘輝 Pan, Huei |
|---|---|
| 論文名稱: |
應用於太陽能降壓無線傳能系統之發射器晶片設計 WPT Transmitter IC Design for Step-Down Solar Power Converter Application |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 直流對直流降壓轉換器 、低壓降穩壓器 、壓控振盪器 、功率放大器 |
| 外文關鍵詞: | DC-DC buck converter, low drop-out regulator, voltage-controlled oscillator, power amplifier |
| 相關次數: | 點閱:169 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一應用於太陽能降壓無線傳能系統之發射器晶片設計概念,並利用TSMC 0.18um 1P6M CMOS 製程技術實現此電路系統,整體系統中子電路包含了直流對直流降壓轉換器、低壓降穩壓器與2.4 GHz壓控振盪器。在系統中當直流對直流降壓轉換器輸入電壓為3.8~5.2V時,發射端頻率為2.4 GHz,輸出功率為+3.19 dBm,效率為2.28%,總面積為0.88×1.262 mm2,整體系統結合市售功率放大器EPA2414後效率為14.98%。
本論文主要分為五個章節,第一章先就目前發展的獵能與無線傳能研究背景與整體獵能系統架構作一簡單介紹,第二章探討直流對直流降壓轉換器工作原理與模擬結果,第三章主要介紹低壓降穩壓器與2.4 GHz壓控振盪器各別的電路操作原理與模擬結果,第四章為低壓降穩壓器與2.4 GHz壓控振盪器電路共同模擬與量測結果(總面積為0.63×0.82mm2)與整體系統之模擬結果,第五章為總結本論文的貢獻及未來規劃。
This thesis presents that design of a WPT transmitter IC design for step-down solar power converter application, which is implemented by TSMC 0.18um 1P6M process technology. The designed circuits blocks include a DC to DC buck converter, a Low Drop-Out (LDO) regulator and a 2.4 GHz voltage-controlled oscillator. When the input voltage of DC to DC buck converter ranges from 3.8 to 5.2V, its output voltage will be at 3.3V. The transmitter’s operation frequency is 2.4 GHz. The output power of the integrated circuit is +3.19 dBm, with a total area is 0.88×1.262 mm2. The efficiency is 2.28%. If we combine the system with a power amplifier EPA2414, the efficiency will be increased to 14.98%.
[1]Aaron Smith, Tommy Hilfiger wants to sell you a solar powered jacket, Dec. 2014
Available on-line http://money.cnn.com/2014/12/04/technology/tommy-hilfiger-
solar-jacket/index.html.
[2]V. Raghunathan, A. Kansal, J. Hsu, J. Friedman and M. Srivastava, “Design considerations for solar energy harvesting wireless embedded system,” in Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks, pp. 457-462, April. 2005.
[3]F. Kocer and M. P. Flynn, “An RF-powered, wireless CMOS temperature sensor,” IEEE Sensor Journal, vol. 6, no. 3, pp. 557-564, Jun. 2006.
[4]Shashank Priya, Daniel J. Inman, Energy Harvesting Technologies, Springer Science+Business Media, 2010.
[5]D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896-909, Jun. 2001.
[6]高曜煌, 射頻鎖相迴路IC設計, 滄海書局, 2005.
[7]R. Meshkin, A. Saberkari, M. Niaboli-Guilani, “A novel 2.4 GHz CMOS class-E power amplifier with efficient power control for wireless communications,” 17th International Conference on ICECS, 12-15 Dec. 2010. pp. 599-602.
[8]梁適安, 交換式電源供應器之理論與實務設計, 全華科技圖書, 2004.
[9]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Boston, MA: Kluwer Academic, 2001.
[10]R. B. Ridley, “A new, continuous-time model for current-mode control [power convertors],” IEEE Trans. on Power Electronics, vol. 6, pp. 271-280, Apr. 1991.
[11]W. H. Chang, An Integrated DCM Buck Converter with Peak-current mode Control, M.S. Thesis, Department of Electrical Engineering, National Cheng Kung University Tainan City, Taiwan, Republic of China, July. 2008.
[12]R. Mammano, “Switching power supply technology: Voltage mode vs. Current mode,” Texas Instruments Inc., Dallas, TX, Unitrode Design Note DN-62, Sep. 1999.
[13]R.C.-H. Chang, H.-M. Chen, C.-H. Chia, P.-S. Lei, “An Exact Current-Mode PFM Boost Converter With Dynamic Stored Energy Technique,” IEEE Trans. on Power Electronics, vol. 24, pp. 1129-1134, April. 2009.
[14]L. Cheung Fai and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, pp. 3-14, Jan. 2004.
[15]R. B. Ridley, “A new continuous-time model for current-mode control with constant frequency, constant on-time, and constant off-time, in CCM and DCM,” in Power Electronics Specialists Conference, 1990. PESC '90 Record, 21st Annual IEEE, 1990, pp. 382-389.
[16]B. Sahu and G. A. Rincon-Mora, “An Accurate, Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control,” IEEE Transactions On Circuits and Systems I, vol. 54, pp. 312-321, Feb. 2007.
[17]J. Xiao, A.V. Peterchev, J. Zhang, and S.R. Sanders, “A 4-uA quiescent-current
dual-Mode digitally controlled buck converter IC for cellular phone applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2342-2348, Dec. 2004.
[18]M. X. Lu, B. H. Hwang, J. J. Chen, Y.S. Hwang, “A sub-1V voltage-mode DC-DC buck converter using PWM control technique,” IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Dec. 2010, pp.1-4.
[19]R. Gregorian, Introduction to CMOS Op-Amps and Comparators, New York: Wiley, 1999.
[20]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, New York: Oxford Univ. Press, 2002.
[21]K. S. Johong, A High-Efficiency Current-Mode Switching Buck Regulator for Portable Application, M.S. Thesis, Department of Electrical Engineering, National Cheng Kung University Tainan City, Taiwan, Republic of China, March. 2008.
[22]O. Trescases, N. Wai Tung, and C. Shuo, “Precision gate drive timing in a zero-voltage-switching DC-DC converter,” in Power Semiconductor Devices and ICs, 2004. Proceedings. ISPSD '04. The 16th International Symposium on, May. 2004, pp. 55-58.
[23]Abbasi. M. U, Abbasi, T. A, Abbasi, M. S, “A Fast Transient Response Low Drop-Out Voltage Regulator,” 2009 WRI World Congress, on Computer Science and Information Engineering, vol. 3, Apr. 2009, pp. 545-549.
[24]M. El-Nozahi, A. Amer, J. Torres, K. Entesari and E. Sanchez-Sinencio, “High PSR low drop-out regulator with feed-forward ripple cancellation technique,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 658-664, Mar. 2010.
[25]S. S. KE, A High Efficiency Synchronous CMOS Switching Buck Regulator with Accurate Current Sensing Technique, M.S. Thesis, Department of Electrical Engineering, National Central University Jhongli City, Taiwan, Republic of China, Oct. 2007.
[26]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Boston, 2001.
[27]K. N. Leung, Philip K. T. Mok, “A Sub-1-V 15-ppm/oC CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device,” IEEE J. Solid-State Circuits, vol. 37, pp. 526-530, April. 2002.
[28]A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Custom Integrated Circuits Conference, Proceedings of the IEEE, May. 1998, pp. 555-558.
[29]Y. A. Eken and J. P. Uyemura, “Multiple-GHz ring and LC VCOs in 0.18μm CMOS,” in Radio Frequency Integrated Circuits (RFIC) Symposium, Digest of Papers. pp. 475-478, June. 2004.
[30]T. Miyazaki, M. Hashimoto, and H. Onodera, “A performance comparison of PLLs for clock generation using ring oscillator VCO and LC oscillator in a digital CMOS process,” in Design Automation Conference, Proceedings of the ASP-DAC. Asia and South Pacific, Jan. 2004, pp. 545-546.
[31]L. T. H and A. Hajimiri, The Design of Low Noise Oscillators, (Kluwer Academic Press, Boston), 2002.
[32]劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.
[33]Z. Wang, H. S. Savci, and N. S. Dogan, “1-V ultra-low-power CMOS LC VCO for UHF quadrature signal generation,”in Circuits and Systems, ISCAS. Proceedings. IEEE International Symposium on, May. 2006.
[34]W. S. Su, Design of Sensor Oscillator, PLL, and Frequency-to-Voltage Converter for Non-invasive IOP Measurement Systems, M.S. Thesis, Department of Electrical Engineering, National Cheng Kung University Tainan City, Taiwan, Republic of China, July. 2012.
[35]2.4 GHz Linearized Power Amplifier Preliminary Datasheet-Rev03, Epic Communications, Inc. Available: http://www.epic.com.tw./DB/images_product/EPA
2414A_PreDatasheet_R03_20100517.pdf
校內:2017-02-05公開