| 研究生: |
宋季軒 Sung, Chi-Hsuan |
|---|---|
| 論文名稱: |
利用服務水準協議於5G垂直應用服務-以智慧製造業為例 Using Service Level Agreements on 5G Vertical Services - A Case Study for Smart Manufacturing |
| 指導教授: |
陳文字
Chen, Wen-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 服務水準協議 、智慧製造 、第五代行動通訊系統(5G) 、垂直應用 |
| 外文關鍵詞: | Service Level Agreement, Smart Manufacturing, Fifth-Generation Mobile Communication System (5G), Vertical Applications |
| 相關次數: | 點閱:61 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
通訊技術的發展成為台灣產業數位轉型的重要工具,特別是第五代行動通訊系統(5G)以其低延遲、高頻寬和廣連結的特性推動垂直應用服務發展。International Mobile Telecommunications-2020 (IMT-2020) 技術的出現擴展了5G的應用場景,包括超可靠低延遲通訊、增強型行動寬頻、大規模機器型通信。5G技術的進一步發展提出了新的指標,資通訊技術(Information and Communication Technology, ICT)正被廣泛應用於產業營運技術(Operational Technology, OT),推動創新應用服務的發展,但資通訊技術與營運技術的整合仍面臨挑戰。本研究將以製造業垂直應用作為重點,提出功能和效能的關鍵指標,以建立服務水準規範,確保服務達到預期水準。新興技術改善傳統製造流程,5G技術則提供了支持其高效運作的通訊基礎設施。本研究旨在評估我國製造業導入5G技術的挑戰,制定適合製造業環境的服務水準協議(Service Level Agreement, SLA)和服務水準規範(Service Level Specification, SLS),以提升產業競爭力,並探討SLA在推廣5G過程中扮演的角色。
本研究採用文獻分析法、案例研究法作為研究方法,首先研析資通訊技術在製造業中垂直應用服務的類型,基於國際學術期刊及技術規範文件,本研究將針對製造業進行系統化的資料分析,探討我國製造業導入5G所面臨的挑戰,並提出我國智慧製造業導入5G技術之建議。由於5G技術為產業帶來了新的運作模式,在製造業中的應用不僅提升了效率,也增強了智慧化水準。但在導入5G技術時,將會面臨諸多挑戰。首先是高昂的初期投資成本,包括基礎設施建設和設備升級;其次,5G技術需要高度整合資通訊技術與營運技術;此外,製造業還需應對技術快速變化帶來的不確定性,並制定分階段導入策略以降低風險。為了彌合ICT廠商和垂直領域廠商之間技術落差,本研究也設計了一套針對製造業的SLA範本,旨在協助廠商導入5G技術,提升效能並推動產業升級。
The development of communication technology is vital for Taiwan's industrial digital transformation. The fifth-generation (5G) mobile communication system drives vertical application services with its low latency, high bandwidth, and extensive connectivity. International Mobile Telecommunications-2020 (IMT-2020) technology expands 5G applications to include ultra-reliable low-latency communications (industrial control, telemedicine), enhanced mobile broadband, and massive machine-type communications. Despite new benchmarks, integrating information and communication technology (ICT) with operational technology (OT) remains challenging.
This study focuses on vertical applications in the manufacturing industry, proposing key indicators for functionality and performance to establish service level specifications (SLS) and ensure service standards. It evaluates the challenges of 5G implementation in Taiwan's manufacturing sector and develops suitable service level agreements (SLA) to enhance competitiveness.
Using literature analysis and case studies, the research drafts preliminary SLS and SLA templates and conducts systematic data analysis to identify challenges and provide recommendations for 5G adoption in Taiwan's smart manufacturing.
5G technology introduces new operational models, improving efficiency and intelligence in manufacturing. SLAs are crucial for ensuring service levels and promoting innovation. Establishing appropriate SLAs is key to driving smart manufacturing and industrial transformation with 5G.
3GPP. (2020). Study on Communication for Automation in Vertical Domains (Release 16).
3GPP. (2022). 3GPP Technical Specification 32.410 version 17.0.0 Release 17, Key Performance Indicators (KPI) for UMTS and GSM.
5G-ACIA. (2021). Service-Level Specifications (SLSs) for 5G Technology-Enabled Connected Industries.
5GPPP. (2017). View on 5G Architecture (Version 2.0).
5GPPP. (2021). Service performance measurement methods over 5G experimental networks. https://doi.org/10.5281/zenodo.4748482
ADLINK. (2023). From Automation to Swarm Autonomy. Retrieved November 7 from https://www.adlinktech.com/en/autonomous-mobile-robot
Alves, H., Jo, G. D., Shin, J., Yeh, C., Mahmood, N. H., Lima, C., Yoon, C., Rahatheva, N., Park, O.-S., & Kim, S. (2021). Beyond 5G URLLC evolution: New service modes and practical considerations. arXiv preprint arXiv:2106.11825, 7.
CSIG. (2014). Cloud Service Level Agreement Standardisation Guidelines. The Cloud Select Industry Group – Subgroup on Service Level Agreements.
Dietrich, F., Angos Mediavilla, M., Turgut, A., Lackner, T., Jooste, W., & Palm, D. (2023). Feasibility assessment of 5G use cases in intralogistics. Smart, sustainable manufacturing in an ever-changing world: Proceedings of International Conference on Competitive Manufacturing (COMA’22),
Eisenhardt, K. M. (1989). Building Theories from Case Study Research. Academy of Management Review, 14(4), 532-550.
ETSI. (2015). ETSI EG 202 009-2 Template for Service Level Agreements (SLA).
Fellan, A., Schellenberger, C., Zimmermann, M., & Schotten, H. D. (2018). Enabling communication technologies for automated unmanned vehicles in industry 4.0. 2018 International Conference on Information and Communication Technology Convergence (ICTC),
Ganesh, E. N. (2021). Study of 5G Technology and its impacts: Review. Recent Trends in Electronics and Communication Systems(3). https://doi.org/10.37591/rtecs
Hazarika, A., & Rahmati, M. (2023). Towards an Evolved Immersive Experience: Exploring 5G- and Beyond-Enabled Ultra-Low-Latency Communications for Augmented and Virtual Reality. Sensors, 23(7).
IEEE. (2021). IEEE Standard for Head-Mounted Display (HMD)-Based Virtual Reality(VR) Sickness Reduction Technology. IEEE Std 3079-2020, 1-74. https://doi.org/10.1109/IEEESTD.2021.9416950
Intel. (2020). Industrial Robotic Arm Solutions from Intel. Retrieved November 7 from https://www.intel.com/content/www/us/en/robotics/robotic-arm.html
ITU-R. (2015). IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond.
ITU-R. (2017). Minimum requirements related to technical performance for IMT-2020 radio interface(s).
ITU-T. (2021). ITU-T Recommendation H.264: Advanced video coding for generic audiovisual services.
Jamwal, A., Agrawal, R., Sharma, M., & Giallanza, A. (2021). Industry 4.0 technologies for manufacturing sustainability: a systematic review and future research directions. Applied Sciences, 11(12), 5725.
Khan, B. S., Jangsher, S., Ahmed, A., & Al-Dweik, A. (2022). URLLC and eMBB in 5G industrial IoT: A survey. IEEE Open Journal of the Communications Society, 3, 1134-1163.
Mahmood, A., Abedin, S. F., Sauter, T., Gidlund, M., & Landernas, K. (2022). Factory 5G: A Review of Industry-Centric Features and Deployment Options. IEEE Industrial Electronics Magazine, 16(2), 24-34. https://doi.org/10.1109/mie.2022.3149209
Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2021). Smart Manufacturing and Tactile Internet Based on 5G in Industry 4.0: Challenges, Applications and New Trends. Electronics, 10(24). https://doi.org/10.3390/electronics10243175
NGMN. (2016). Perspectives on Vertical Industries and Implications for 5G. NGMN Alliance.
NGMN. (2019). Verticals URLLC use cases and requirements. NGMN Alliance.
Nowak, T. W., Sepczuk, M., Kotulski, Z., Niewolski, W., Artych, R., Bocianiak, K., Osko, T., & Wary, J.-P. (2021). Verticals in 5G MEC-use cases and security challenges. IEEE Access, 9, 87251-87298.
O’Connell, E., Moore, D., & Newe, T. (2020). Challenges Associated with Implementing 5G in Manufacturing. Telecom, 1(1), 48-67.https://doi.org/10.3390/telecom1010005
Odważny, F., Szymańska, O., & Cyplik, P. (2018). Smart Factory: the requirements for implementation of the Industry 4.0 solutions in FMCG environment-case study. LogForum, 14(2), 257-267.
Priyadarshana, V., Yaparathne, Y., Jayasooriya, D., Thennakoon, T., Jayasekara, A., & Chandima, D. (2022). Voice Controlled Robot Manipulator for Industrial Applications. 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON),
Qureshi, H. N., Manalastas, M., Zaidi, S. M. A., Imran, A., & Al Kalaa, M. O. (2020). Service level agreements for 5G and beyond: Overview, challenges and enablers of 5G-healthcare systems. IEEE Access, 9, 1044-1061.
Saafi, S., Fodor, G., Hosek, J., & Andreev, S. (2021). Cellular Connectivity and Wearable Technology Enablers for Industrial Mid-End Applications. IEEE Communications Magazine, 59(7), 61-67. https://doi.org/10.1109/mcom.001.2000988
Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., Silva, P. D., Tufvesson, F., Benjebbour, A., & Wunder, G. (2017). 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201-1221. https://doi.org/10.1109/JSAC.2017.2692307
Shukla, S., Hassan, M. F., Khan, M. K., Jung, L. T., & Awang, A. (2019). An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment. PloS one, 14(11), e0224934.
Silvestri, L., Forcina, A., Introna, V., Santolamazza, A., & Cesarotti, V. (2020). Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Computers in Industry, 123, 103335.
Slalmi, A., Saadane, R., Chehri, A., & Kharraz, H. (2021, 2021//). How Will 5G Transform Industrial IoT: Latency and Reliability Analysis. Human Centred Intelligent Systems, Singapore.
Soldatos, J., Lazaro, O., & Cavadini, F. (2022). The Digital Shopfloor-Industrial Automation in the Industry 4.0 Era: Performance Analysis and Applications. CRC Press.
Specialty, H. (2023). What is an Automatic Guided Vehicle? https://handling.com/guide/what-is-an-automatic-guided-vehicle/
Tellis, W. M. (1997). Application of a Case Study Methodology. The Qualitative Report, 3(3).
TMForum. (2011). SLA Management Handbook, Release 3.0.
Vignaroli, L., Gramaglia, M., Fuentes, M., Casella, A., Odarchenko, R., Natale, L., Altman, B., & D’Andria, F. (2020). The touristic sector in the 5G technology era: The 5G-TOURS project approach. 2020 IEEE Globecom Workshops (GC Wkshps,
Won, J. W., & Ahn, J. M. (2021). 3GPP URLLC patent analysis. ICT Express, 7(2), 221-228. https://doi.org/10.1016/j.icte.2020.09.001
Wu, Y., Dai, H.-N., Wang, H., Xiong, Z., & Guo, S. (2022). A Survey of Intelligent Network Slicing Management for Industrial IoT: Integrated Approaches for Smart Transportation, Smart Energy, and Smart Factory. IEEE Communications Surveys & Tutorials, 24(2), 1175-1211. https://doi.org/10.1109/comst.2022.3158270
Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61, 530-535. https://doi.org/10.1016/j.jmsy.2021.10.006
Yin, R. K. (1994). Case study research: Design and methods (Vol. 5).
王桂華. (2019). 製造業升級智慧工廠的考量因素─以笠源科技股份有限公司為例 國立中興大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/pf65f8
朱柔若. (2000). 社會研究方法:質化與量化取向(原作者:Neuman, W. L.). 揚智出版社。(原著出版年:1997).
吳欣蓉. (2015). 雲端服務架構下服務水準協議之設計 銘傳大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/96dt32
林志威. (2023). 台灣工具機產業導入智慧工廠關鍵因素之探討 東海大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/9d8wb8
游邵軒. (2021). 應用網路層級分析法探討造紙廠升級智慧工廠之關鍵成功因素 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/s3rd6a
楊鳳雲. (2011). 以ISO 20000建立國軍資訊服務委外契約服務水準協議之研究 國防大學管理學院]. 臺灣博碩士論文知識加值系統. 桃園縣. https://hdl.handle.net/11296/xp96ud
溫國泰. (2023). 智慧製造轉型成功之個案研究 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/c7cgzv
魏慶洋. (2021). 企業推動智慧工廠之調查研究-以台灣SMT 電子廠為例 東吳大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/crc3rq