| 研究生: |
王順寬 Wang, Swun-Kwang |
|---|---|
| 論文名稱: |
斜向波浪之波揚與波降和反射係數及布拉格共振之研究 Wave Setup, Setdown, Reflection and Bragg Resonance of Obliquely Incident Waves |
| 指導教授: |
許泰文
Hsu, Tai-Wen 歐善惠 Ou, Shan-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 波揚與波降 、反射係數 、布拉格共振 |
| 外文關鍵詞: | Bragg resonance, reflection coefficient, setup and setdown |
| 相關次數: | 點閱:113 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先提出斜向波浪入射不透水底床的波揚與波降理論,用以瞭解波浪入射角度對波揚與波降所造成的影響,作為海岸工程應用之參考。理論分析得知,波揚與波降隨波浪入射角度的增加而減少。由試驗數據及現場實測資料的範圍顯示,本研究之波揚與波降理論,只適用於溢波與捲波的碎波型態。本研究並以水工模型試驗驗證波浪斜向入射時,碎波帶內波浪振幅與水深成線性關係的假設。再者,由理論分析結果發現,無因次波揚與碎波點波向角及海灘剖面形狀有關;且由於波揚的作用,導致灘線向陸地方向退縮,灘線移動的距離雖與剖面的形狀無關,但隨波浪入射角的增加而變小。
其次,本研究利用三個不等間距的測點所量測的波浪振幅,考慮波浪的線性淺化與折射效應,及地形造成的位相差,提出波浪斜向入射斜坡時的反射係數,及分離入射與反射波的方法,並探討模式的適用性及限制。經與前人數值模擬和試驗的結果相比較可知,本文的理論可推估不同地形變化的反射係數;並由水工模型試驗及數值計算結果,得知不同入射角度的波浪,入射斜坡上橢圓淺灘的反射係數分佈情況。本研究並對波高、水深及距離等量測上的誤差,進行敏感度分析,探討其對反射係數造成的影響。
本研究擴展Miles (1981) 之波浪通過擾變底床理論,推導斜向波浪通過不透水複合式系列潛堤的反射係數通式,對瞭解布拉格反射與共振現象,提出一個簡單又快速的方法。以兩群複合式矩形淺潛的反射係數通式,與水工模型試驗及數值計算所得結果比較後,顯示本研究的理論與試驗數據及數值計算結果均相當吻合。影響波浪通過複合式系列淺堤的反射係數的因素,包括波浪週波數、波浪入射角、淺堤堤寬、淺堤高度、淺堤總個數、淺堤間距,及群與群之間的間隔等;本研究針對這些影響因素加以分析探討,以瞭解其對布拉格共振效應的影響程度。
This study presents an analytical study for the wave setup and setdown, as induced by obliquely incident waves on an impermeable beach profile. The wave setup and setdown are found to decrease with the increasing wave obliquity. Notably, the inclusion of the wave obliquity in wave setup and setdown formulations offers a better physical suitability for engineering applications. The general solution effectively produces the limiting flow behavior with normal wave incidence, and the reduced results remained consistent with the available classical theories. Moreover, the results computed from the present theory are found to exhibit good agreement with the existing experimental data and field measurements. The present theory is primarily applicable to the spilling and plunging breakers across the surf zone, within which wave amplitude is assumed to be linearly related to the local water depth. Experiments were also conducted to verify the theoretical results, especially to confirm the validity of the assumption of linear dependence wave amplitude with the water depth in the case of obliquely incident waves. The theoretical formulation indicates that the dimensionless setup depends on wave angle at breaking and the shape of the beach profile; and it has a non-zero value at the original shoreline position, thus resulting in landwards advancement of the original shoreline.
A three-point method is also proposed for estimating wave reflection of an obliquely incident wave propagating over a sloping beach. The assumption of linear wave shoaling and refraction are applied to determine the changes in wave amplitude and phase shift due to variations in bathymetry. Wave reflection coefficient is estimated using the wave amplitudes measured at three fixed wave gauges with different distances from them. Based on the reflection coefficient and the measured amplitude, separation of incident and reflected waves is calculated. In addition, the applicability of the present theory is confirmed by comparing the results available from other theoretical and numerical models concerning the estimation of wave reflection. Within the framework of the present research, experiments were also conducted for the obliquely propagating wave over an elliptic shoal in a large wave basin, in order to investigate the effect of wave angle on the transmitted and reflected waves. The sensitivity of the present method with respect to the errors associated with the measurement of wave amplitudes, water depths and distance is also tested to provide a more accurate prediction of the reflection coefficient.
Miles’ (1981) theory for wave propagation on variable seabed is extended to derive a general expression suitable for describing the Bragg scattering effect and wave reflection coefficient of obliquely incident waves over composite artificial bars with different wave conditions and dispositions of bars. Experiments on Bragg reflections over doubly composite rectangular artificial bars were also performed in a wave flume to verify the validity of the present theory. It has been found that theoretical solutions remain in good agreement with the results obtained from numerical computations and the laboratory experiments. Despite the complex nature of such flows and the involvement of a number of variables in the mechanism of wave reflection (e.g. wave obliquity, shapes of bars, relative interval, relative spacing, relative bar heights, relative bar footprint and the number of bars), the present theory produced dependable results, which remained in good agreement with other theoretical results and experimental findings. Therefore, the present theory may serve as a valuable tool for estimating Bragg reflection coefficients and wave resonance for a number of engineering practices.
1. Abul-Azm, A.G.., 1994. Diffraction through wide submerged breakwaters under oblique waves. Ocean Engineering 21, 683-706.
2. Bailard, J.A., DeVries, J., Kirby, J.T., Guza, R.T., 1990. Bragg reflection breakwater: a new shore protection method. Proceedings of 22nd International Conference on Coastal Engineering, ASCE, Delft, pp. 1702-1715.
3. Bailard, J.A., Deveries, J.W., Kirby, J.T., 1992. Considerations in using Bragg reflection for strom eroision protection. Journal of Waterway, Port, Coastal and Ocean Engineering 118, 62-74.
4. Baldock, T.E., Simmonds, D.J., 1999. Separation of incident and reflected waves over sloping bathymetry. Coastal Engineering 38, 167– 176.
5. Baquerizo, A., Lasoda, M.A., Smith, J.M., Kobayashi, N., 1997. Cross-shore variation of wave reflection from beaches. Journal of Waterway, Port, Coastal and Ocean Engineering 123, 274–279.
6. Battjes, J.A., 1974. Surf similarity. Proceedings of 14th International Conference on Coastal Engineering, ASCE, Copenhagen, pp. 466-480.
7. Belzons, M., Rey, V., Guazzelli, E., 1991. Subharmonic Bragg resonance for surface water waves, Europhysic Letters 16, 189-194.
8. Berkhoff, J.C.W., 1972. Computation of combined refraction-diffraction. Proceedings of 13th International Conference on Coastal Engineering, ASCE, Vancouver, pp. 705-720.
9. Berkhoff, J.C.W., Booy, N., Radder, A.C., 1982. Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Engineering 6, 255-279.
10. Booij, N., 1983. A note on the accuracy of the mild-slope equation. Coastal Engineering 7, 191-203.
11. Bowen, A.J., 1969. Rip currents, 1: theoretical investigations. Journal of Geophysical Research 74, 5468-5478.
12. Bowen, A.J., Inman, D.L., Simmons, V.P., 1968. Wave setdown and wave setup. Journal of Geophysical Research 73, 2569-2577.
13. Chamberlain, P.G., Porter, D., 1995. The modified mild-slope equation. Journal of Fluid Mechanics 291, 393-407.
14. Chang, H.K., 2002. A three-point method for separating incident and reflected waves over a sloping bed. China Ocean Engineering 16, 499-511.
15. Chang, H.K., Hsu, T.W., 2003. A two-point method for estimating wave reflection over a sloping beach. Ocean Engineering 30, 1833-1847.
16. Chen, K.H., Chen, J.T., Chou, C.R., Yueh, C.Y., 2002. Dual boundary element analysis of oblique incident wave passing a thin submerged breakwater. Engineering Analysis with Boundary Elements 26, 917-928.
17. Cho, Y.S., Lee, C., 2000. Resonant reflection of waves over sinusoidally varying topographies. Journal of Coastal Research 16, 870-876.
18. Dalrymple, R.A., Kirby, J.T., 1986. Water waves over ripples. Journal of Waterway, Port, Coastal and Ocean Engineering 112, 309-319.
19. Dalrymple, R.A., Losada, M.A., Martin, P.A., 1991. Reflection and transmission from porous structures under oblique wave attack. Journal of Fluid Mechanics 224, 625-644.
20. Davies, A.G., Guazzelli, E., Belzons, M., 1989. The propagation of long waves over an undulating bed. Physical Fluids 144, 1331-1340.
21. Davies, A.G., Heathershaw, A.D., 1984. Surface wave propagation over sinusoidally varying topography. Journal of Fluid Mechanics 144, 419-443.
22. Dean, R.G., 1977. Equilibrium beach profiles: U.S. Atlantic and Gulf Coasts. University of Delaware, Ocean Engineering Report 12, 45pp.
23. DHI, 1998. MIKE21 Coastal Hydraulics and Oceanography Hydrodynamic Module. User Guide and Reference Manual, Release 2.7, Danish Hydraulic Institute, Demark.
24. Frigaard, P., Brorsen, M., 1995. A time domain method for separating incident and reflected irregular waves. Coastal Engineering 24, 205-215.
25. Goda, Y., Suzuki, Y., 1976. Estimation of incident and reflected waves in random wave experiments. Proceedings of 15th International Conference on Coastal Engineering, ASCE, Honolulu, pp. 828-845.
26. Guazzelli, E., Rey, V., Belzons, M., 1992. Higher-order Bragg reflection of gravity surface waves by periodic beds. Journal of Fluid Mechanics 245, 301-317.
27. Guza, R.T., Thornton, E.B., 1981. Wave setup on a natural beach. Journal of Geophysical Research 86, 4133-4137.
28. Hamliton, D.G., Ebersole, B.A., 2001. Establishing uniform longshore currents in a large-scale sediment facility. Coastal Engineering 42, 199-218.
29. Hanslow, D., Nielsen, P., 1993. Shoreline set-up on natural beaches. Journal of Coastal Research 15, 1-10.
30. Healy, J.J., 1953. Wave damping effect of beaches. Proceedings of Minnesota International Hydraulics Convention, pp. 213-220.
31. Holman, R.A., Sallenger, A.H., 1985. Set-up and swash on a natural beach. Journal of Geophysical Research 90, 945-953.
32. Horikawa, K., 1988. Nearshore Dynamics and Coastal Processes. University of Tokyo Press, Tokyo, 522pp.
33. Horikawa, K., Kuo, C.T., 1966. A study of wave transformation inside the surf zone. Proceedings of 10th International Conference on Coastal Engineering, ASCE, Tokyo, pp. 217-233.
34. Hsu, T.W., 1998. Geometric characteristics of storm-beach profiles caused by inclined waves. Ocean Engineering 25, 69-84.
35. Hsu, T.W., Wen, C.C., 2000. A study of using parabolic equation extended to account for rapidly varying topography. Journal of the Chinese Institute of Engineers 23, 515-527.
36. Hsu, T.W., Wen, C.C., 2001. A parabolic equation extended to account for rapidly varying topography. Ocean Engineering 28, 1479-1498.
37. Hsu, T.W., Chang, H.K., Tsai, L.H., 2002. Bragg reflection of waves by different shapes of artificial bars. China Ocean Engineering 16, 343-358.
38. Hsu, T.W., Ou, S.H., Tzang, S.Y., 2000. Evaluations of coastal topographical changes at Hualien Coast, Taiwan. Journal of Coastal Research 16, 790-799.
39. Hsu, T.W., Tsai, L.H., Huang, Y.T, 2003. Bragg scattering of water waves by doubly composite artificial bars. Coastal Engineering Journal 45, 235-253.
40. Hughes, S.A., 1993. Laboratory wave reflection analysis using co-located gages. Coastal Engineering 20, 223–247.
41. Isaacson, M., 1991. Measurement of regular wave reflection. Journal of Waterway, Port, Coastal, and Ocean Engineering 117, 553-569.
42. Kamisky, G., Kraus, N.C., 1993. Evaluation on depth-limited wave breaking criteria. Waves’93, ASCE, 180-193.
43. Kawahara, M., Kashiyama, K., 1984. Selective lumping finite element method for nearshore current. International Journal for Numerical Methods in Fluids 4, 71-97.
44. Kirby, J.T., 1986. A general wave equation for waves over rippled beds. Journal of Fluid Mechanics 162, 171-186.
45. Kirby J.T., Anton, J.P., 1990. Bragg reflection of waves by artificial bars. Proceedings of 22nd International Conference on Coastal Engineering, ASCE, Delft, pp. 757-768.
46. Kishi, T., Saeki, H., 1966. The shoaling, breaking and runup of the solitary wave on impermeable rough slopes. Proceedings of 10th International Conference on Coastal Engineering, ASCE, Tokyo, pp. 322-348.
47. Komar, P.D., 1998. Beach Processes and Sedimentation (2nd ed). Prentice-Hall, Englewood Cliffs, New Jersey.
48. Komar, P.D., Gaughan, M.K., 1972. Airy wave theory and break height prediction. Proceedings of 13th International Conference on Coastal Engineering, ASCE, Vancouver, pp. 405-418.
49. LéMéhauté, B, Wang, J.D., 1980. Transformation of monochromatic waves from deep to shallow water. Coastal Engineering Research Center, Technical Report 80-2, 43p.
50. Li, B., 1994. An evolution equation for water waves. Coastal Engineering 23, 227–242.
51. Lin, C.Y., Huang, C.J., 2004. Decomposition of incident and reflected higher harmonic waves using four wave gauges. Coastal Engineering 51, 395-406.
52. Liu, Y., Yue, D.K.P, 1998. On generalized Bragg scattering of surface waves by bottom ripples. Journal of Fluid Mechanics 356, 297-326.
53. Longuet-Higgins, M.S., 1970a. Longshore current generated by obliquely incident waves, 1. Journal of Geophysical Research 75, 6778-6789.
54. Longuet-Higgins, M.S., 1970b. Longshore current generated by obliquely incident waves, 2. Journal of Geophysical Research 75, 6790-6801.
55. Longuet-Higgins, M.S., Stewart, R.W., 1963. A note on wave set-up. Journal of Marine Research 21, 4-10.
56. Longuet-Higgins, M.S., Stewart, R.W., 1964. Radiation stress in water waves, a physical discussion with application. Deep Sea Research 11, 529-563.
57. Losada, M.A., Arcilla, A.S., Vidal, C., 1986. Another approach to longshore current evaluation. Proceedings of 20th International Conference on Coastal Engineering, ASCE, Taipei, pp. 1361-1377.
58. Mansard, E.P.D., Funke, E.R., 1980. The measurement of incident and reflected spectra using a least squares method. Proceedings of the 17th Conference on Coastal Engineering, ASCE, Sydney, pp. 154-172.
59. McCowan, J., 1894. On the highest wave of permanent type. Philosophical Magazine, Series 5, 38, 351-357.
60. McDougal, W.G., 1993. State of the art practice in coastal engineering. Lecture Notes, Tainan Hydraulics Laboratory, National Cheng Kung University, Taiwan.
61. McDougal, W.G.., Hudspeth, R.T., 1983. Wave setup/setdown and longshore current on non-planar beaches. Coastal Engineering 7, 103-117.
62. Mei, C.C., 1985. Resonant reflection of surface waves by periodic sandbars. Journal of Fluid Mechanics 152, 315-335.
63. Mei, C.C., Hara, T., Naciri, M., 1988. Note on Bragg scatting of water waves by parallel bars on the seabed. Journal of Fluid Mechanics 186, 147-162.
64. Miles, J.W., 1981. Oblique surface-wave diffraction by a cylindrical obstacle. Dynamics of Atmospheres and Oceans 6, 121-123.
65. Nishimura, H., Maruyama, K., Sakurai, T., 1985. On the numerical computation of nearshore currents. Coastal Engineering in Japan 28, 137-145.
66. O’Hare, T.J., Davies, A.G., 1993. A comparison of two models for surface-wave propagation rapidly varying topography. Applied Ocean Research 15, 1-11.
67. Péchon, P., Rivero, F., Johnson, H., Chesher, T., O’Connor, B., Tanguy, J.M., Karambas, T., Mory, M., 1997. Intercomparison of wave-driven current models. Coastal Engineering 31, 199-215.
68. Rattanapitikon, W., Shibayama, T., 2000. Verification and modification of breaker height. Coastal Engineering Journal 42, 389-406.
69. Rhee, J.P., 1977. On the transmission of water waves over a shelf. Applied Ocean Research 19, 161-169.
70. Ruggiero, P., McDougal, W.G., 2001. An analytic model for the prediction of wave setup, longshore currents and sediments transport on beaches with seawalls. Coastal Engineering 43, 161-182.
71. Saville, T., 1961. Experimental determination of wave set-up. Proceedings of the 2nd Technical Conference on Hurricanes, Beach Erosion Board.
72. Silvester, R., Hsu, J.R.C., 1989. Sines revisited. Journal of Waterway, Port, Coastal and Ocean Engineering 115, 327-344.
73. Suh, K.D., Lee, C., Park, W.S., 1997. Time-dependent equation for wave propagation on rapidly varying topography. Coastal Engineering 32, 91-117.
74. Suh, K.D., Park, W.S., Park, B.S., 2001. Separation of incident and reflected waves in wave-current flumes. Coastal Engineering 43, 149– 159.
75. Svendsen, I.A., Qin, W., Ebersole, B.A., 2003. Modelling waves and currents at the LSTF and other laboratory facilities. Coastal Engineering 50, 19-45.
76. Thornton, E.B., Guza, R.T., 1982. Energy saturation and phase speeds measured on natural beaches. Journal of Geophysical Research 87, 9499-9508.
77. Thornton, E.B., Guza, R.T., 1983. Transformation of wave height distribution. Journal of Geophysical Research 88, 5925-5938.
78. Van Dorn, W.G., 1976. Setup and run up in shoaling breakers. Proceedings of the 15th International Conference on Coastal Engineering, ASCE, Honolulu, pp. 738-751.
79. Webster, W.C., Wehausen, J.V., 1995. Bragg scattering of water waves by Green-Naghdi Theory. Zeitschrift für angewandte Mathematik und Physik 46 Special Issue, S566-S583.
80. Weggel, J.R., 1972. Maximum breaker height. Journal of Waterway, Port, Coastal and Ocean Engineering 98, 529-548.
81. Zhang, L., Kim, M.H., Zhang, J., Edge, B.L., 1999. Hybrid model for Bragg scattering of water waves by steep doubly-sinusoidal bars. Journal of Coastal Research 15, 486-495.
82. 中村孝幸、森田知志,1988,「斜坡中におけゐ透過性防波堤の消波效果と作用波力の特性について」,日本第35回海岸工學講演會論文,第547-551頁。
83. 陳陽益,1991a,「波形底床上規則重力波之解析(2)」,港灣技術第六期
,第55-83頁。
84. 陳陽益,1991b,「自由表面規則前進重力波傳遞於波形底床上共振現象」,第十五屆全國力學會議論文集,台灣台南,第289-296頁。
85. 陳陽益,1992,「規則前進重力波傳遞於波形底床上」,港灣技術第七期,第17-47 頁。
86. 陳陽益、湯麟武,1990,「波床底床上規則前進重力波之解析」,第十二屆海洋工程研討會論文集,台灣台北,第270-305頁。
87. 黃正欣、謝景琦,1994,「斜向入反射波浪分離方法之研究」,第十六屆海洋工程研討會,台灣高雄,part B,第268-287頁。
88. 黃正欣、黃正利,1995,「波浪斜向入射堤面反射率之研究」,第十七屆海洋工程研討會,暨1995 兩岸港口及海岸開發研討會論文集(上),台灣台南,第765-781頁。
89. 張憲國、許泰文、李逸信,1997,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,台灣台中,第242-249頁。
90. 岳景雲、曹登皓、陳丙奇,1997a,「波浪斜向入射任意形狀潛堤反射率之研究」, 第十九屆海洋工程研討會論文集,台灣基隆,第204-211頁。
91. 岳景雲、曹登皓、陳丙奇,1997b,「波浪通過系列潛堤反射率之研究」,第八屆全國海岸工程學術討論會暨1997兩岸港口及海岸開發研討會論文集(下),中國北京,第683-690頁。
92. 岳景雲、曹登皓、陳丙奇,1998,「波浪斜向入射正方形複列潛堤反射率之研究」, 第二十屆海洋工程研討會論文集,台灣基隆,第265-272頁。
93. 岳景雲、曹登皓、江天授、李厚慶,1999,「波浪斜向入射斜坡底床上不透水潛堤之研究」, 第二十一屆海洋工程研討會論文集,台灣新竹,第191-197頁。
94. 岳景雲、曹登皓、翁文凱,2000,「波浪通過不透水雙列潛堤之研究」,2000兩岸港口及海岸開發研討會論文集,台灣新竹,第112-118頁。