| 研究生: |
陳柄良 Chen, Bing-Liang |
|---|---|
| 論文名稱: |
壓電蠕動式微幫浦的錯誤分析之研究 Failure Analysis for Peristaltic Micropumps with PZT Actuators |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 31 |
| 中文關鍵詞: | 微機電系統 、微型幫浦 、鋯鈦酸鉛驅動器 、錯誤分析 、BVD模組 、壓電電性模組 、電性分析 |
| 外文關鍵詞: | microelectromechanical systems (MEMS), Micropump, Lead zirconate titanate (PZT), failure analysis (FA), BVD (Butterworth-Van Dyke), electrical analysis |
| 相關次數: | 點閱:135 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前微型幫浦已廣泛應用在生醫研究上。其中以壓電材料(PZT)為致動器的微型幫浦最適合發展高精準度控制的藥物輸送系統。在微幫浦製造過程中容易出現一些不良因素而使得微型幫浦在組裝上或操作上出現故障情形,而使得微型幫浦的效能降低。而在大量的微型幫浦中去找出有瑕疵的微型幫浦是很困難且耗時的,所以本研究提供一個方便且快速的方法來做檢測。在致動器組裝成微型幫浦前,透過電性分析的量測方式做快速檢測,將有問題的致動器排除掉,減少製作出有瑕疵的微型幫浦之機率。藉著錯誤分析這種方法我們不只可以很快地判斷出有瑕疵的微型幫浦而且還可以判斷故障的類型。
The research and development of microelectromechanical systems (MEMS) have been growth dramatically in the last 20 years. Interest in Micropump miniaturization has led to the development of bulk lead zirconate titanate (PZT) for actuators and MEMS. The PZT actuators are most likely to be applied in implementations for a portable micropump for medical drug delivery. A typical micropump is a MEMS device, which provides the actuation source to transfer the fluid from the drug reservoir to the body with precision, accuracy and reliability. Failure detection is a key ingredient in successful micropump process development, attainment of high production yields and assurance of long-term reliability. In this paper, we present the electrical analysis by using the modified Butterworth-Van Dyke (BVD) model for valveless peristaltic PZT micropump fabricating analysis. By observing the elements value of the characteristics such as Rx and C0 can detect the faults and classify the failure type easily. The failure analysis (FA) of micropump assembling process is focus on the common failures: (a) PZT cracked (b) Unevenly silver epoxy (c) PZT inversion. The analysis approach combining experiment with the circuit model is helpful to understand and PZT micropump fabricating reliability. It can help to detect the defect of the peristaltic PZT micropump and classify the failure type.
[1] Nisar, A, Afzulpurkar, N, Mahaisavariya, B, Tuantranont, A. MEMS-based micropumps in drug delivery and biomedical applications. In: Sensors and Actuators B: Chemical 130; p. 917–42. 2008.
[2] Fair RB, Khlystov A, Srinivasan V, Pamula VK, Weaver KN. Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform. In: Proc SPIE 5591; p. 113-24. 2004.
[3] Andersson H, Van den Berg A. Microfluidic devices for cellomics: A review. In: Sensors and Actuators B: Chemical 92; p. 315-25. 2003.
[4] Merlijn van Spengen W, Pusers R, Mertens R, Ingrid De Wolf. Characterization and failure analysis of MEMS: high resolution optical investigation of small out-of-plane movements and fast vibrations. In: Microsystem Technologies 10; p. 89-96. 2004.
[5] Lintel van HTG, Pol van de FCM, Bouwstra S. A piezoelectric micropump based on micromachining of silicon. In: Sensors and Actuators 15; p. 153-67. 1988.
[6] Jang LS, Li YJ, SJ Lin, Hsu YC, Yao WS, Tsai MC, Hou CC. A stand-alone peristaltic micropump based on piezoelectric actuation. In: Biomed Microdevices 9; p. 185-94. 2007.
[7] Rapp R, Schomburg WK, Maas D, Schulz J, W. Stark. LIGA micropump for gases and liquids. In: Sensors and Actuators A: Physical 40; p. 57–61. 1994.
[8] Pol van de FCM, Lintel van HTG, Elwenspoek M, Fluitman JHJ. A thermopneumatic micropump based on micro-engineering techniques. In: Sensors and Actuators A: Physical 21; p. 198–202. 1990.
[9] Zengerle R, Ulrich J, Kluge S, Richter M, Richter A. A bidirectional silicon micropump. In: Sensors and Actuators A: Physical 50; p. 81–6 1995.
[10] Walraven JA. Future Challenges for MEMS Failure Analysis. In: Proceedings of International Test Conference; p. 850-5. 2003.
[11] Li YB, Jiang ZB. An Overview of Reliability and Failure Mode Analysis of Microelectromechanical Systems (MEMS). In: Handbook of Performability Engineering; p. 953-66. 2008.
[12] Jeng YR, Tsai PC, Fang TH. Nanomeasurement and fractal analysis of PZT ferroelectric thin films by atomic force microscopy. In: Microelectronic Engineering 65; p. 406-15. 2003.
[13] Smith CA, Cole Jr EI. Resistive Contrast Imaging: A New SEM Mode for Failure Analysis. In: IEEE Transactions on Electron Devices Ed. 33: 2; p. 282-6. 1986.
[14] Walraven JA, Cole Jr EI, Tangyunyong P. Failure Analysis of MEMS Using Thermally-Induced Voltage Alteration, In: Proceedings from the 26th ISTFA; p. 489-96. 2000.
[15] Jang LS, Kan WH, Chen MK, Chou YM. Parameter extraction from BVD electrical model of PZT actuator of micropumps using time-domain measurement technique. In: Microfluidics and Nanofluidics 7; p. 559-68. 2009.
[16] Jeong OC, Park SW, Yang SS, Pak JJH. Fabrication of a peristaltic PDMSmicropump. In: Sensors and Actuators A: Physical 123–4; p. 453–8. 2005.
[17] Chou YM, Chen MK, Jang LS. Modified BVD Model of PZT Actuator by Time Domain Method for Micropump Application. In: Microfluidics and Nanofluidics 8; p. 727-38. 2009.
[18] Cheng JQ, Qian CF, Zhao MH, Lee, Tong P, Zhang TY. Effects of electric fields on the bending behavior of PZT-5H piezoelectric laminates. In: Smart Materials and Strutres 9; p. 824-31. 2000.
[19] Ueda S. Electromechanical response of a center crack in a functionally graded piezoelectric strip. In: Smart Materials and Strutres 14; p. 1133-8. 2005.
[20] Xu XL, Rajapakse RKND. Analytical solution for an arbitrarily oriented void/crack and fracture of piezoceramics. In: Acta Materialia 47; p. 1735-47. 1999.
校內:2014-08-31公開