簡易檢索 / 詳目顯示

研究生: 林政翰
Lin, Cheng-Han
論文名稱: 無線網路存取點上視訊傳輸的隨機早期偵測前向糾錯機制之研究
Study of RED-FEC Mechanisms on Access Point for Video Transmission over WLAN
指導教授: 謝錫堃
Shieh, Ce-Kuen
共同指導教授: 黃文祥
Hwang, Wen-Shyang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 72
中文關鍵詞: 無線網路影像傳輸前向糾錯
外文關鍵詞: wireless access, video delivered, FEC
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FEC (Forward Error Correction)是一種在無線網路中常用的傳輸錯誤回復機制,一般適應性的FEC(Adaptive FEC)技術會根據接收端所回傳(feedback)的資訊調整FEC保護比率(FEC rate)。然而,經過計算與回傳的資訊因為時間上的延遲,可能會造成所得到的FEC rate無法準確反應出網路目前的狀態。本論文先後提出兩個做在無線網路接取點(wireless Access Point)上的錯誤更正機制,分別為(1)隨機早期偵測前向糾錯機制(Random Early Detection Forward Error Correction,RED-FEC); (2)增強式隨機早期偵測前向糾錯機制(Enhanced RED-FEC,ERED-FEC),用以改善無線區域網路之影像傳輸品質。與之前的AFEC機制相比,我們所提出的RED-FEC和ERED-FEC機制是藉由無線接取點(Access Point)進行網路狀態判斷,以決定出最適合的FEC保護比率,並由無線接取點負責產生錯誤保護封包(FEC packets)。RED-FEC機制主要根據網路的負載情況,再利用RED佇列管理技術調整最後所傳送出去的FEC保護封包數量。而ERED-FEC機制是針對RED-FEC本身的功能進行設計上的改良,在考慮網路狀態時包含兩個部份,一個是藉由封包的重傳次數判斷無線通道狀態(wireless channel state),並搭配影像品質模型進行分析,另外一個是觀察無線AP的佇列長度判斷目前網路流量負載。首先,ERED-FEC機制會量測目前的網路封包遺失率,並利用影像品質分析的模型決定出適合的FEC rate,接著再根據網路負載與利用RED佇列管理技術調整最後所傳送出去的FEC保護封包。經過這些步驟的計算,ERED-FEC機制可以傳送出最適量的FEC保護封包並有效改善影像傳輸品質。經由網路模擬數據分析與驗證,我們所提出的AP-based RED-FEC機制在高、低網路負載都可有效提升錯誤回復效能,並充分利用無線網路頻寬資源。

    FEC (Forward Error Correction) is a popular technology used to perform packet error recovery. Typical Adaptive FEC schemes (AFEC) tune the FEC rate on the basis of feedback information supplied by the receiver. However, the processes of calculating and feeding back an appropriate FEC rate, inevitably have a finite duration, and hence the FEC rate implemented at the sender end may not accurately reflect the current network condition. This dissertation proposes two FEC schemes which are implemented at the wireless Access Point (AP): (1) Random Early Detection Forward Error Correction mechanism (RED-FEC) and (2) Enhanced RED-FEC mechanism (ERED-FEC) to improve the quality of video delivered over Wireless Local Area Networks (WLANs). In contrast to previous AFEC schemes, in our proposed methods, the FEC redundancy rate is calculated directly at the wireless AP in accordance with the network conditions. In the RED-FEC scheme, the final number of FEC redundant packets is tuned based on the current network traffic load by a RED mechanism. In the ERED-FEC scheme, the number of redundant FEC packets is determined in accordance with both wireless channel condition and network traffic load. The wireless channel condition is indicated by packet retransmission times; while the queue length of the wireless access point indicates the network traffic load. First, the FEC redundancy rate is determined from the estimation of packet loss rate and the analysis model of video quality. Then, the ERED-FEC tunes the final number of FEC redundant packets based on the current network traffic load by a RED mechanism. By adopting this approach, the proposed AP-based RED-FEC schemes significantly improves the video quality without feeding back information. The numerical results show that the proposed AP-based RED-FEC mechanisms achieve better performance than the related FEC mechanisms in both light and heavy load.

    摘要 I Abstract III 誌謝 V Contents VI Figures VIII Tables X CHAPTER 1 INTRODUCTION 1 1.1 Introduction 1 1.2 Motivation 4 1.3 Contribution 6 1.4 Organization of the Dissertation 8 CHAPTER 2 BACKGROUND 9 2.1 Forward Error Correction (FEC) 9 2.2 MPEG-4 video structure 11 2.3 Related works 13 2.3.1 Sender-based FEC mechanisms 13 2.3.2 Adaptive Cross-Layer FEC (ACFEC) 16 CHAPTER 3 RANDOM EARLY DETECTION FORWARD ERROR CORRECTION (RED-FEC) Mechanism 18 3.1 Basic concept of RED-FEC mechanism 18 3.2 RED-FEC algorithm 21 3.3 Analytical model of RED-FEC mechanism 23 CHAPTER 4 ENHANCED RANDOM EARLY DETECTION FORWARD ERROR CORRECTION (ERED-FEC) Mechanism 28 4.1 Basic concept of ERED-FEC mechanism 28 4.2 ERED-FEC algorithm 30 4.2.1 Estimation of packet loss rate in wireless network 32 4.2.2 An analysis model of video stream with FEC mechanism 34 4.2.3 Adjustment of FEC packets with RED mechanism 38 CHAPTER 5 RESULTS AND DISCUSSIONS 41 5.1 Experiment environment and setting 41 5.2 Estimation of packet loss rate 43 5.3 Performance analysis of FEC modelling 47 5.4 Performance analysis of ERED-FEC mechanism 52 5.5 Performance comparison of AP-based FEC mechanisms 57 CHAPTER 6 CONCLUSIONS 66 Bibliography 68

    [1] D. J. Deng, C. H. Ke, Y. M. Huang and H. H. Chen, “Contention window optimization for IEEE 802.11 DCF access control,” IEEE Transactions on Wireless Communication, vol. 7, no. 12, pp. 5129 – 5135, Dec. 2008.
    [2] K. Takahata, N. Uchida, Y. Shibata, “QoS control for real time video stream over hybrid network by wired and wireless LANs,” in International conference on Advanced Information Networking and Applications, AINA 2003, pp. 45 – 51, 2003.
    [3] H. Zhihai and X. Hongkai, “Transmission distortion analysis for real-time video encoding and streaming over wireless networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, pp. 1051 – 1062, 2006.
    [4] A. Nafaa, Y. Hadjadj-Aoul and A. Mehaoua, “On interaction between loss characterization and forward error correction in wireless multimedia communication,” in IEEE international conference on Communications, ICC 2005, pp. 1390 – 1394, 2005.
    [5] K. Jeong Geun and M. M. Krunz, “Bandwidth allocation in wireless networks with guaranteed packet-loss performance,” IEEE/ACM Transactions on Networking, vol. 8, pp. 337 – 349, 2000.
    [6] M. Elaoud and P. Ramanathan, “Adaptive use of error-correcting codes for real-time communication in wireless networks,” in IEEE Conference on Computer and Communications, INFOCOM1998, vol. 2, pp. 548 – 555, Apr. 1998.
    [7] H. Seferoglu, Y. Altunbasak, O.Gurbuz, and O. Ercetin, “Rate distortion optimized joint ARQ-FEC scheme for real-time wireless multimedia,” in IEEE Conference on Computer and Communications, ICC2005, vol. 2, pp. 1190 – 1194, May 2005.
    [8] I. Joe, “A novel adaptive hybrid ARQ scheme for wireless ATM network,” Journal of Wireless Networks, vol. 6, pp. 211 – 219, July 2000.
    [9] J. Paavola, H. Himmanen, T. Joela, J. Poikonen and V. Ipatov, “The performance analysis of MPE-FEC decoding methods at the DVB-H link layer for efficient IP packet retrieval,” IEEE Transactions on Broadcasting, vol. 53, pp. 263 – 275, Mar. 2007.
    [10] H. L. Lou, M. J. F. G. Garcia and V. Weerackody, “FEC scheme for TDM-OFDM based satellite radio broadcasting system,” IEEE Transactions on Broadcasting, vol. 46, pp. 60 – 67, Mar. 2000.
    [11] A. Nafaa, T. Ahmed and A. Mehaoua, “Unequal and interleaved FEC protocol for robust MPEG-4 multicasting over wireless LANs,” in IEEE Conference on Computer and Communications, ICC2004, vol. 3, pp. 1431 – 1435, Jun. 2004.
    [12] K. Park and W. Wang, “QoS-sensitive transport of real-time MPEG video using adaptive forward error correction,” in IEEE Conference on Multimedia Computing and Systems, MMCS1999, vol. 2, pp. 426 – 432, Jun. 1999.
    [13] P. Lettieri, C. Schurgers and M. Srivastava, “Adaptive link layer strategies for energy efficient wireless networking,” Journal of Wireless Networks, vol. 5, pp. 339 – 355, Sep. 1999.
    [14] J. C. Bolot and A. Vega-Garcia, “The case for FEC-based error control for packet audio in the Internet,” in International Conference on ACM Multimedia Systems, pp. 429 – 439, Nov. 1996.
    [15] I. V. Bajic, “Efficient cross-layer error control for wireless video multicast,” IEEE Transactions on Broadcasting, vol. 53, pp. 276 – 285, Mar. 2007.
    [16] K. Takahata, N. Uchida and Y. Shibata, “Packet error and frame rate controls for real time video stream over wireless LANs,” in International Conference on Distributed Computing Systems Workshops, ICDCSW2003, pp. 594 – 599, May 2003.
    [17] I. V. Bajic, “Efficient cross-layer error control for wireless video multicast,” IEEE Transactions on Broadcasting, vol. 53, pp. 276 – 285, 2007.
    [18] K. Park and W. Wang, “AFEC: an adaptive forward error correction protocol for end-to-end transport of real-time traffic,” in International Conference on Computer Communications and Networks, ICCCN1998, pp. 196 – 205, Oct. 1998.
    [19] A. Chockalingam and M. Zorzi, “Wireless TCP performance with linklayer FEC/ARQ,” in IEEE Conference on Computer and Communications, ICC1999, pp. 1212 – 1216, Jun. 1999.
    [20] H. Ma and M. EI Zarki, “A new transport protocol for broadcasting/multicasting MPEG-2 video over wireless ATM access networks,” Journal of Wireless Networks, vol. 8, pp. 317 – 380, Jul. 2002.
    [21] C. H. Ke, N. Chilamkurti, G. Dudeja and C. K. Shieh, “A new adaptive FEC algorithm for wireless LAN networks,” in International Conference on Networks and Communication Systems, IASTED2006, pp. 425 – 428, Mar. 2006.
    [22] M. Tun, K. K. Loo and J. Cosmas, “Error-resilient performance of Dirac video codec over packet-erasure channel,” IEEE Transactions on Broadcasting, vol. 53, pp. 649 – 659, Sept. 2007.
    [23] C. H. Lin, C. H. Ke, C. K. Shieh and N. Chilamkurti, “An enhanced adaptive FEC mechanism for video delivery over wireless networks,” in International Conference on Networking and Services, ICNS2006, 2006.
    [24] H. Du, Y. Liu, C. Guo and Y. Liu, “Research on adaptive FEC for video delivery over WLAN,” in International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM2009, pp. 4808 - 4811, 2009.
    [25] P. C. Huang, K. C. Chu, H. F. Lo, W. T. Lee and T. Y. Wu, “A novel adaptive FEC and interleaving architecture for H.264/SVC wireless video transmission,” in International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIHMSP2009, pp. 989 - 992, 2009.
    [26] C. H. Lin, C. K. Shieh, N. Chilamkurti, C. H. Ke and W. S. Hwang, “A RED-FEC mechanism for video transmission over WLANs,” IEEE Transactions on Broadcasting, vol. 54, no. 3, pp. 517 - 524, Sep. 2008.
    [27] L. Han, S. Park, S. Kang and H. P. In, “An adaptive Cross-Layer FEC mechanism for video transmission over 802.11 WLANs,” in International Conference on Internet, ICI 2009, pp. 209 - 215, Dec 2009.
    [28] C. H. Ke, C. H. Lin, C. K. Shieh, W. S. Hwang and A. Ziviani, “Evaluation of streaming MPEG video over wireless channels,” Journal of Mobile Multimedia, vol. 3, Mar 2007.
    [29] H. Koumaras, C. H. Lin, C. K. Shieh and A. Kourtis, “A framework for end-to-end video quality prediction of MPEG video,” Journal of Visual Communication and Image Representation, vol. 21, no. 2, pp. 139 – 154, Feb 2010.
    [30] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometric codes,” IEEE Transactions on Information Theory, vol. 45, pp. 1757 – 1767, 1999.
    [31] V. Roca, “Design, evaluation and comparison of four large block FEC codecs, LDPC, LDGM, LDGM staircase and LDGM triangle, plus a Reed-Solomon small block FEC codec,” INRIA res. rep. RR-5225, Jun. 2004.
    [32] L. Rizzo, “Effective erasure codes for reliable computer communication protocols,” ACM SIGCOMM Computer Communication Review, vol. 27, issue 2, pp. 24 – 36, April 1997.
    [33] J. Mitchell and W. Pennebaker. MPEG Video: Compression Standard. Chapman and Hall, 1996. ISBN 0412087715.
    [34] C. H. Lin, C. H. Ke, C. K. Shieh and N. Chilamkurti, “The packet loss effect on MPGE video transmission in wireless networks,” in IEEE International Conference on Advanced Information Networking and Applications (AINA’06), Austria, pp. 656 – 572, April 2006.
    [35] A. Ziviani, B. E. Wolfinger, J. F. Rezende, O. C. M. B. Duarte and S. Fdida, “Joint adoption of QoS schemes for MPEG streams,” Journal of Multimedia Tools and Applications, vol. 26, pp. 59 – 80, May 2005.
    [36] L. Atzori, F. G. B. De Natale and C. Perra, “A spatio-temporal concealment technique using boundary matching algorithm and mesh-based warping (BMA-MBW),” IEEE Transactions on Multimedia, vol. 3, no. 3, pp. 326 – 338, Sept. 2001.
    [37] P. Salama, N. B. Schroff and E. J. Delp, “Error concealment in MPEG video streams over ATM networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 1129 – 1144, June 2000.
    [38] S. T. Hsiang and J. W. Woods, “Embedded video coding using invertible motion compensated 3-D subband/wavelet filter bank,” Signal Processing: Image Communication, vol. 16, pp. 705 – 724, May 2001.
    [39] P. Chen and J. W. Woods, “Bi-directional MC-EZBC with lifting implementation,” IEEE Transactions on Circuits System and Video Technology, vol. 14, no. 10, pp. 1182 – 1194, Oct 2004.
    [40] IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 1999.
    [41] M. Van Der Schaar and N. Sai Shankar, “Cross-layer wireless multimedia transmission: challenges, principles, and new paradigms,” IEEE wireless communications, vol. 12, no. 4, pp. 50 – 58, Aug 2005.
    [42] Y. Shan and A. Zakhor, “Cross Layer Techniques for Adaptive Video Streaming over Wireless Networks” in IEEE International Conference on Multimedia and Expo, ICME 2002, pp. 277 - 280, 2002.
    [43] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Transaction on Networking, vol. 4, pp. 397 – 413, Aug. 1993.
    [44] NS-2 simulator, http://hpds.ee.ncku.edu.tw/smallko/ns2/ns2.htm
    [45] YUV Video Sequences, http://trace.eas.asu.edu/yuv/index.html
    [46] Q. Ni, L. Romdhani and T. Turletti, “A survey of QoS enhancements for IEEE 802.11 wireless LAN, Wiley Journal of Wireless Communications and Mobile Computing, vol. 4, pp. 547 – 566, Aug. 2004.
    [47] IEEE Standard 802.11e-2005, Wireless LAND Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 8: Medium Access Control Quality of Service Enhancements, 2005.
    [48] C. H. Lin, C. K. Shieh, C. H. Ke, N. Chilamkurti and S. Zeadally, “An adaptive cross-layer mapping algorithm for MPEG-4 video transmission over IEEE 802.11e WLAN,” Telecommunication Systems Journal, vol. 42, no. 3, pp. 223 – 234, Dec. 2009.
    [49] IEEE 802.16 Standard-Local and Metropolitan Area Networks-Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Standard 802.16-2004.
    [50] D. J. Deng, L. W. Chang, C. H. Ke, Y. M. Huang and J. Morris Chang, “Delay constrained uplink scheduling policy for rtPS/nrtPS service in IEEE 802.11e BWA systems,” International Journal of Communication Systems, vol. 22, no. 2, pp. 119 – 133, Feb. 2009.

    下載圖示 校內:2012-07-05公開
    校外:2012-07-05公開
    QR CODE