簡易檢索 / 詳目顯示

研究生: 洪慧齡
Hung, Hui-Ling
論文名稱: 保全防災機器人團隊之全方位軌跡運動控制
Omni-Directional Trajectory Control for Surveillance and Security Robot Team
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 100
中文關鍵詞: 全模糊邏輯控制器全方位移動系統軌跡控制保全防災機器人
外文關鍵詞: SOPC system, fully-fuzzy logic controller, surveillance and security robot, omni-directional trajectory control
相關次數: 點閱:121下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係探討保全防災機器人團隊之全方位軌跡追蹤運動控制。首先描述機器人硬體架構與四輪正交底座機構之設計,伺服系統主要是由馬達回授訊號作為軌跡追蹤之依據,並以NIOS為處理核心,負責資料擷取、介面溝通、計算及實現全方位移動系統軌跡控制演算法。本文利用逆運動學之幾何關係,推得機器人之輪速與姿態,再結合系統之動態模型,推導出完全運動方程式。
    就控制方法而言,我們提出軌跡控制演算法,此演算法主要由全模糊邏輯控制器所構成,其包含了速度模糊邏輯控制器與位置模糊邏輯控制器。首先將狀態利用逆運動學關係轉成角速度,針對速度回授訊號作補償,再結合位置模糊邏輯控制器補償機器人之基本速度與移動角度,以實現全方位動態軌跡追蹤行為。最後,由實際實驗結果來驗證所設計之全方位軌跡追蹤控制系統的效益。

    This thesis mainly confers the study of omni-directional trajectory motion control implemented by the SOPC system. In the hardware architecture, four mutual orthogonal omni-directional wheels are horizontally established on the plane of the chassis and four optical encoders are equipped with DC motors to read the data of angular velocity and compute the posture of the surveillance and security robot (SSR). By using inverse kinematics relationship, we can transform the angular velocity and the angle in the robot coordinate frame into the linear velocity and the absolute position in the world coordinate frame. Moreover, the complete equations of the motion of the SSR are also derived. The robot will track the desired trajectory which has been generated by the trajectory generation system. We present a fully-fuzzy trajectory tracking system which consists of a trajectory control algorithm (TCA) and a fuzzy logic controller (FLC). They can compensate for the errors of the velocity and regulate the errors of the position based on the dynamic model. After dealing with the information, the correct trajectory motion can be determined. Finally, the experimental results indicate that the proposed omni-directional trajectory control scheme can be successfully applied to the SSR.

    Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2. Overview of the ODMR and the SSR 4 2.1 Introduction 4 2.2 Overview of the ODMR 5 2.3 Overview of the SSR 7 2.4 System Architecture of the SSR 8 2.5 Hardware Architecture of the SSR 10 2.5.1 Power System and Driver Circuit Board 11 2.5.2 DC Motor and Encoder Module 13 2.5.3 Central Processor Units: NIOS + NB 15 2.5.4 Wireless Communication Module 19 2.5.5 CCD and Sensor Module 21 2.5.6 Hardware Configuration of the SSR 25 2.6 Summary 27 Chapter 3. Design of the Trajectory Control 28 3.1 Introduction 28 3.2 Kinematic Model of the SSR 30 3.3 Dynamic Model of the SSR 34 3.4 Design Procedure of Development of NIOS 40 3.4.1 NIOS CPU 40 3.4.2 Servo Control System 41 3.4.3 The NIOS II Interface 46 3.4.4 The Trajectory Control Algorithm (TCA) 50 3.5 Summary 57 Chapter 4. A Fully-Fuzzy Controller Design for the SSR 59 4.1 Introduction 59 4.2 A Fully-Fuzzy Trajectory Tracking System 60 4.3 Velocity Controller- P Controller and FLC 61 4.4 Position Controller- FLC 71 4.5 Dynamic Trajectory Tracking Behavior for the SSR 75 4.6 Summary 76 Chapter 5.Experimental Results 77 5.1 Introduction 77 5.2 The Operation Interface of the SSR 78 5.3 Experimental Results of the TCA 80 Chapter 6. Conclusion and Future Works 94 6.1 Conclusion 94 6.2 Future Works 95 References 96 Biography 100

    [1]H. Martínez-Alfaro, and S. Gómez-García, “Mobile robot path planning and tracking using simulated annealing and fuzzy logic control,” Expert Systems with Applications, Vol. 15, No.3, pp. 421-429, 1998.
    [2]I. Kolmanovsky, and N. H. McClamroch, “Developments in nonholonomic control problems,” IEEE Control Systems Magazine, Vol. 15, pp. 20-36, December, 1995.
    [3]F. G. Pin, and S. M. Killough, “A new family of omnidirectional and holonomic wheeled platforms for mobile robots,” IEEE Trans. Robotics and Automation, Vol. 10, No. 4, pp. 480-489, August, 1994.
    [4]H. Kobayashi, and M. Yanagida, “Moving object detection by an autonomous guard robot,” in Proc. the 4th IEEE Int. Workshop on Robot and Human Communication, pp. 323-326, Tokyo, 1995.
    [5]Y. Shimosasa, J. Kanemoto, K. Hakamada, H. Horii, T. Ariki, Y. Sugawara, F. Kojio, A. Kimura, and S. Yuta, “Security service system using autonomous mobile robot,” in Proc. the IEEE SMC '99 Conf. Systems, Man, and Cybernetics, Vol. 4, pp. 825-829, 1999.
    [6]B. Carlisle, An Omni-Directional Mobile Robot: Development in Robotics, IFS Publ. Ltd., 1983.
    [7]M. West, and H. Asada, “Design of Ball Wheel Vehicles with Full Mobility, Invariant Kinematics and Dynamics and Antmi-Slip Control,” J. Mech. Des. Trans. ASME, Vol. 119, No. 2, pp. 153-161, 1994.
    [8]S. G. Tzafestas, T. Krikochoritis, and A. Melfi, “Modeling and control of an omnidirectional mobile robot,” in Proc. the 2nd International Conf. Robotics and Automation, Vol. 181, pp. 391-402, 2000.
    [9]M. Asada, and H. Kitano (Eds.), RoboCup-98: Robot Soccer World Cup II, LNCS, Springer, Vol. 1604, New York, 1999.
    [10]P. F. Muir, and C. P. Neuman, “Kinematic Modeling for Feedback Control of an Omnidirectional Wheeled Mobile Robots,” in Proc. 1987 IEEE Int. Conf. Robotics and Automation, 1987.
    [11]P. F. Muir, and C. P. Neuman, “Kinematic Modeling of Wheeled Mobile Robots,” J. Robotic Systems, Vol. 4, No. 2, pp. 281-340, April, 1987.
    [12]http://www.nasa.gov/
    [13]Y. Takahahi, and I. Masuda, “A Visual Interface for Security Robots,” IEEE Int. Workshop on Robot and Human Communication, pp. 123-128, 1992.
    [14]H. Hara, “Development of ROBOT KOBAN,” IEEE European Convention on Security and Detection, pp. 193-197, 1995.
    [15]L. E. Parker, and B. A. Emmons, “Cooperative multi-robot observation of multiple moving targets,” in Proc. the IEEE Int. Conf. Robotics and Automation, Vol. 3 , pp. 2082-2089, 1997.
    [16]http://www.sks.com.tw/sksweb/web/index.asp
    [17]http://www.faulhaber-group.com/
    [18]http://www.altera.com/
    [19]http://www.intel.com/support/wireless/wlan/pro2200bg/
    [20]http://www.msicomputer.com/product/p_spec.asp?model=RG54GS
    [21]M. J. Jung, H. S. Shim, H. S. Kim, and J. H. Kim, “The miniature omni-directional mobile robot OmniKity-I (OK-I),” in Proc. the Int. Conf. Robotics and Automation, Vol. 4, pp. 2686-2691, 1999.
    [22]V. Muñoz, A. Ollero, M. Prado, and A. Simón, “Mobile robot trajectory planning with dynamics and kinematics constraints,” in Proc. the IEEE Int. Conf. Robotics and Automation, Vol. 4, pp. 2802-2807, May, 1994.
    [23]N. Faiz, and S. K. Agrawal, “Trajectory planning of robots with dynamics and inequalities,” in Proc. the 2000 IEEE Int. Conf. Robotics and Automation, Vol. 4, pp. 3976-3982, April, 2000.
    [24]K. L. Moore, and N. S. Flann, “A six-wheeled omni-directional autonomous mobile robot,” Control Systems Magazine, IEEE, Vol. 20, No. 6, pp. 53-66, 2000.
    [25]T. Kalmár-Nagy, R. D’Andrea, and P. Ganguly, “Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle,” IEEE Trans. Robotics and Autonomous Systems, Vol. 46, No. 1, pp. 47-64, 2004.
    [26]M. Saito, and T. Tsumura, “Collision Avoidance Among Multiple Mobile Robots -A Local Approach Based on Non-linear Programming,” Trans. the Institute of Systems, Control and Information Engineers, Vol. 3, No. 8, pp. 252-260, Japan, 1990.
    [27]K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang and T. Fukuda, “Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots,” J. Intelligent and Robotic Systems, Vol. 22, No. 3, pp.315-330, 1998.
    [28]R. L. Williams II, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic Model with Slip for Wheeled Omni-Directional Robots,” IEEE Trans. Robotics and Automation, Vol. 18, No. 3, pp. 285-293, March, 2002.
    [29]T. Tsuji, K. Chigusa and M. Kaneko, “Trajectory generation of moving robots using active deformation of artificial potential fields,” J. Japan Society of Mechanical Engineers, Vol. 62, No. 597, pp. 1905-1911, Japan, 1996.
    [30]K. Watanabe, “Control of an Omnidirectional Mobile Robot,” in Proc. the 1998 IEEE 2nd Int. Conf. Knowledge-Based Intelligent Electronic Systems, pp. 51-60, Australia, 1998.
    [31]C. C. Shing, P. L. Hsu, and S. S. Yeh, “T-S Fuzzy Path Controller Design for the Omnidirectional Mobile Robot,” in Proc. 32nd Annu. Conf. Industrial Electronics, pp. 4142-4147, 2006.
    [32]H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy Systems, Vol. 4, No. 1, pp. 14-23, 1996.
    [33]K. Tanaka, T. Ikeda, and H. O. Wang, “An LMI approach to fuzzy controller designs based on relaxed stability conditions,” in Proc. 6th Int. Fuzzy Systems Conf., pp. 171-179, Spain, 1997.
    [34]K. Tanaka, and H. O. Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach, NY: John Wiley & Son, Inc., 2001.
    [35]C. S. Tseng, B. S. Chen, and H. J. Uang, “Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,” IEEE Trans. Fuzzy Systems, Vol. 9, No.3, pp. 381-392, 2001.
    [36]W. J. Chang, and C. C. Shing, “Discrete output feedback fuzzy controller design for achieving common state covariance assignment,” ASME, J. Dynamic Systems, Meas. and Control, Vol. 126, No. 3, pp. 627-632, 2004.
    [37]J. B. Bednar, and T. L. Watt, “Alpha-trimmed means and their relationship to median filters,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 32, pp 145-153, 1984.
    [38]L. A. Zadeh, “Fuzzy Algorithm,” Information Control, Vol. 12, pp. 94-102, 1968.
    [39]L. A. Zadeh, “Fuzzy Sets,” Information Control, Vol. 8, pp. 338-353, 1965.
    [40]L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Systems, Man and Cybernetics, Vol. 3, pp. 28-44, 1973.

    下載圖示 校內:2010-07-27公開
    校外:2012-07-27公開
    QR CODE