簡易檢索 / 詳目顯示

研究生: 何文浩
Ho, Wen-Hao
論文名稱: 利用注入鎖定實現多通道頻率鍵移通訊的低功耗發射機
A Low Power Multi-Channel FSK Transmitter with Injection Locking Technique
指導教授: 鄭光偉
Cheng, Kuang-Wei
黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 102
中文關鍵詞: 發射機低功耗多通道通訊三角積分調變器二進位頻率鍵移調變注入鎖定非線性功率放大器
外文關鍵詞: Transmitter, low power, multi-channel communication, delta-sigma modulator, binary frequency shift keying, injection locking, nonlinear power amplifier
相關次數: 點閱:127下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個新的發射機架構,在電路上減少了傳統發射機電路中鎖相迴路與混頻器的使用,並且在輸出級使用了非線性的功率放大器,也因此整體電路能達到低功率消耗的目標,此外本發射機使用三角積分調變器來達成高解析度的多通道通訊,並且提出一個新的機制去消除三角積分調變器所產生的高頻雜訊,利用分數型注入鎖定來取代傳統迴路濾波器的使用;在調變方面則使用二進位頻率鍵移調變,而整體的發射機輸出頻帶則操作在工業科學及醫學頻段中規定的四百三十三百萬赫茲。
    本論文的在前半段章節介紹電路上的觀念,例如:三角績分調變器、注入鎖定,及子電路的架構與實現,章節四則為量測考量的介紹及結果,總共有兩顆晶片在本論文中介紹,分別為:注入鎖定式分數型頻率合成器及利用注入鎖定實現多通道頻率鍵移通訊的低功耗發射機,兩顆晶片皆為TSMC18RF製程,第一顆晶片利用現場可編輯邏輯閘陣列(FPGA)來驗證分數型注入鎖定晶片,晶片面積為 1.158 x 1.158 mm2 ;第二顆晶片的部分則為發射機功能的驗證及量測考量介紹,在模擬的環境下,整體電路的功耗為727µ watt,而輸出的功率為-21.3dBm,資料速率為100kbps,晶片的面積為1.447 x 1.447 mm2。

    This thesis proposes a new architecture of transmitter which eliminates the sub-block utilization in traditional transmitter such as PLL and mixer. Besides, with the application of nonlinear power amplifier, the low power design can be achieved. This transmitter also has the characteristic of multi-channel communication in fine resolution which is fulfilled with Delta-Sigma Modulator (DSM) and proposes a novel technique fractional injection locking to filter out the quantization frequencies resulting from DSM without the utilization of loop filter. With respect to modulation, this transmitter is based on Binary frequency shift keying (BFSK) modulation in ISM band (433 Mega Hz).
    The preceding chapters introduce the concepts such as Delta-Sigma Modulator Injection Locking、and corresponding circuit implementation in proposed transmitter. The measurement results are given in chapter four. There are two chips in this thesis and they are fractional-N injection locking frequency synthesizer and low power multi-channel FSK transmitter with injection locking technique. All the chips are based on TSMC18RF process. The preceding one is to validate the proposed technique of quantization frequencies filtering with the aid of FPGA. This chip area is 1.158 x 1.158 mm2. The second chip is to validate the proposed transmitter. The power consumption of transmitter in simulation is 727µ watt with -21.3dBm output power and data rate is 100kbps. The chip area is 1.447 x 1.447 mm2.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 The Concept of Traditional Transmitter 1 1.3 The Block Diagram of Proposed Transmitter 3 1.4 Thesis Organization 6 Chapter 2 Delta-Sigma Modulator and Injection Locking 7 2.1 The Concepts of Delta-Sigma Modulator 8 2.2 Multi-Stage Modulator 12 2.3 Injection Locking Phenomenon 18 2.4 Sub-Harmonic Injection Locking 24 Chapter 3 Circuit Implementation and Simulation Results 26 3.1 Delta-Sigma Modulator 26 3.2 Dithering 31 3.3 Divide-by-Two Circuit 35 3.4 Multi-Modulus Frequency Divider 37 3.4.1 2/1 Divider 37 3.4.2 3/2 Divider 38 3.4.3 50% Output Duty Cycle MMFD 40 3.5 Impulse Generator 45 3.6 Injection Locking Mechanism 47 3.7 Ring Oscillator 51 3.8 Edge Combiner 59 3.9 System Simulation 64 Chapter 4 Measurements 74 4.1 Fractional-N Injection Locking Frequency Synthesizer 74 4.1.1 Introduction 74 4.1.2 Sub-harmonic Injection Locking with Fixed Period 78 4.1.3 Fractional Injection Locking with Synthesized Period 79 4.1.4 Summary 82 4.2 Low Power Multi-Channel FSK Transmitter 86 4.2.1 Introduction 86 4.2.2 Implementation 90 4.2.3 Summary 98 Chapter 5 Conclusion 99 Reference 100

    [1] Behzad Razavi, “RF Microelectronics,” Prentice Hall, 2 edition, October 2011.
    [2] Jagdish Pandey, and Brian P. Otis, “A Sub-100 W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication,” IEEE J. Solid-State Circuits, vol. 46, no. 5, May 2011.
    [3] Joonsung Bae, Namjun Cho, and Hoi-Jun Yoo, “A 490uW Fully MICS Compatible FSK Transceiver for Implantable Devices,” IEEE Symp. VLSI Circuits, June 2009.
    [4] Wan-Thai Hsu, Andrew R. Brown, Kenneth R. Cioffi, “A Programmable MEMS FSK Transmitter,” IEEE Int. Solid-State Circuits, Mems and Sensors, session, 16.2, February 2006.
    [5] 劉深淵, 楊清淵,“鎖相迴路”滄海書局, 2011.
    [6] Richard schreier, “Understanding Delta-Sigma Data Converters,” Wiley-IEEE Press, 1 edition, November 2004.
    [7] Behzad Razavi, “A Study of Injection Locking and Pulling in Oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, September 2004.
    [8] Sudip Shekhar, Mozhgan Mansuri, Frank O’Mahony, Ganesh Balamurugan, James E. Jaussi, Joseph Kennedy, David J. Allstot, Randy Mooney, and Bryan Casper, “Strong Injection Locking in Low-Q LC Oscillators : Modeling and Application in a Forwarded-Clock I/O Receiver,” IEEE Transactions on Circuits and System—I: Regular papers, vol. 56, no. 8, August 2009.
    [9] Dustin Dunwell, and Anthony Chan Carusone, “Modeling Oscillator Injection Locking Using the Phase Domain Response,” IEEE Transactions on Circuits and System—I: Regular papers, vol. 60, no. 11, November 2013.
    [10] Jri Lee, and Huaide Wang, “Study of Subharmonically Injection-Locked PLLs,”
    IEEE J. Solid-State Circuits, vol. 44, no. 5, May 2009.
    [11] Noridumi Kanemaru, Sho Ikeda ,Sang-yeop Lee, Satoru Tanoi, Hiroyuki Ito, Noboru Ishihara, and Kazyuya Masu, “A ring-VCO-based injection-locked frequency multiplier using a new pulse generation technique in 65 nm CMOS,” IEEE SoC Design Conference (ISOCC), 2011.
    [12] Belal M. Helal, Chun-Ming Hsu, Kerwin Johnson and Michael H. Perrott, “ A Low Jitter Programmable Clock Multiplier Based on a Pulse Injection-Locked Oscillator With a Highly-Digital Tuning Loop,” IEEE J. Solid-State Circuits, vol. 44, no. 5, May 2009.

    [13] Ahmed Musa, WeiDeng, Teerachot Siriburanon, Masaya Miyahara, Kenichi Okada, and AkiraMatsuzawa, “A Compact, Low-Power and Low-Jitter Dual-Loop Injection Locked PLL Using All-Digital PVT Calibration,” IEEE J. Solid-State Circuits, vol. 49, no. 1, January 2014.
    [14] Samir Palnitkar , “Verilog HDL,” Prentice Hall, 2 edition, March 2003.
    [15] 廖裕評, 陸瑞強,“邏輯電路設計 DE2-115 實戰寶典,”友晶科技, 2012.
    [16] S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4-GHz delta-sigma fractional N-PLL with 1-Mb/s in loop modulation,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 49–62, January 2004.
    [17] Cicero S. Vaucher, Igor Ferencic, Matthias Locher, Sebastian Sedvallson, Urs Voegeli, and Zhenhua Wang, “A Family of Low-Power Truly Modular Programmable Dividers in Standard 0.35-m CMOS Technology,” IEEE J. Solid-State Circuits, vol. 35, no. 7, July 2000.
    [18] Chi-Sheng Lin, Ting-Hsu Chien, and Chin-Long Wey, “A 5.5-GHz 1-mW Full-Modulus-Range Programmable Frequency Divider in 90-nm CMOS Process,” IEEE Transactions on Circuits and System—II: Express Brief, vol. 58, no. 9, September 2011.
    [19] M. Jurgo, K. Kiela and R. Navickas, “Design of Low Noise 10 GHz divide–by–16…511 Frequency Divider,” Elektronika Ir Elektrotechnika, ISSN 1392-1215, vol. 19, no. 6, 2013.
    [20] Mo Zhang, Syed Kamrul Islam, and M. Rafiqul Haider, “A fast programmable frequency divider with a wide dividing-ratio range and 50% duty-cycle,” IEICE Electronics Express, vol. 4, 2007. 
    [21] Zhiming Chen, Kuang-Wei Cheng, Yuanjin Zheng, and Minkyu Je, “A 3.4-mW 54.24-Mbps Burst-Mode Injection-Locked CMOS FSK Transmitter,” IEEE Asian Solid-State Circuits Conference, November 14-16. 2011.
    [22] Kyoya Takano, Mizuki Motoyoshi and Minoru Fujishima, “4.8GHz CMOS Frequency Multiplier with Subharmonic Pulse-Injection Locking ,” IEEE Asian Solid-State Circuits Conference, November 2007.
    [23] Narasimha R. Lanka, Satwik A. Patnaik, and Ramesh A. Harjani “Frequency-Hopped Quadrature Frequency Synthesizer in 0.13- m Technology,” IEEE J. Solid-State Circuits, vol. 46, no. 9, September 2011.
    [24] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 1 edition, August 2000.
    [25] Willy M. C. Sansen , “Analog Design Essentials,” Springer, First Edition edition, March 15. 2007.
    [26] Yalcin Alper Eken, “High Frequency Voltage Controlled Ring Oscillators in Standard CMOS,” July 2003.
    [27] M. Grozing, B. Philip, and M. Berroth, “CMOS ring oscillator with quadrature outputs and 100 MHz to 3.5 GHz tuning range,” 29th Eur. Solid-State Circuits Conf. (ESSCIRC), 2003.
    [28] Wei-Hsuan Tu, Jyh-Yih Yeh, and Hung-Chieh Tsai, “A 1.8 V 2.5–5.2 GHz CMOS dual-input two-stage ring VCO,” IEEE Asia-Pasific Conf. Adv. Syst. Integ. Circuits, pp. 134–137 August 2004.
    [29] Luciano Severino de Paula, Sergio Bampi, Eric Fabris and Altamiro Amadeu Susin, “A High Swing Low Power CMOS Differential Voltage-Controlled Ring Oscillator”, 14th IEEE International Conference on Electronics, Circuits and Systems Proceedings, ICECS 2007, 11-14 December 2007.
    [30] Kuan-Chao Liao, Po-Sheng Huang, Wei-Hao Chiu, and Tsung-Hsien Lin, “A 400-MHz/900-MHz/2.4-GHz Multi-band FSK Transmitter in 0.18-μm CMOS,” IEEE Asian Solid-State Circuits Conference, November 2009.
    [31] Tino Copani, Seungkee Min, Sridhar Shashidharan, Sudipto Chakraborty, Mark Stevens, Sayfe Kiaei and Bertan Bakkaloglu, “A CMOS Low-Power Transceiver With Reconfigurable Antenna Interface for Medical Implant Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, May 2011.

    無法下載圖示 校內:2019-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE