| 研究生: |
曾金賢 Tseng, Chin-Hsien |
|---|---|
| 論文名稱: |
適用於高解析度主動式矩陣有機發光二極體顯示器之低溫多晶矽閘極驅動電路與同步式畫素電路設計 Design of LTPS Gate Driver Circuit and Simultaneous Emission Pixel Circuits for High-Resolution AMOLED Displays |
| 指導教授: |
林志隆
Lin, Chih-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 低溫多晶矽 、閘極驅動電路 、同步式發光 、畫素電路 、高解析度 、主動式矩陣有機發光二極體 |
| 外文關鍵詞: | LTPS, gate driver circuit, simultaneous emission, pixel circuit, high resolution, AMOLED |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相較於氫化非晶矽薄膜電晶體以及非晶相銦鎵鋅氧化物薄膜電晶體,低溫多晶矽薄膜電晶體具有較高載子移動率且較穩定之特性,因此適合用於閘極驅動電路以及主動式矩陣有機發光二極體畫素電路之驅動元件,然而,低溫多晶矽薄膜電晶體之技術會受到製程環境雷射溫度影響,使得分布在不同位置之面板中的電晶體之臨界電壓有所差異而降低顯示畫面品質。現今人們追求高解析度視覺體驗已成為趨勢,在高解析度面板操作中,用漸進式掃描訊號驅動畫素電路,會因畫素補償時間不足而導致畫面的變異性無法完全被補償。相較之下,用同步式訊號驅動法,補償時間在高解析度面板操作中可不受解析度影響,因此能成功補償整個面板之驅動薄膜電晶體變異性。
本論文為改善氫化非晶矽薄膜電晶體之低載子移動率問題,先提出一個9T2C閘極驅動電路以用於高解析度液晶顯示器中,其方法是藉由一簡單架構使驅動薄膜電晶體在洩流輸出點時,能保持高驅動力以縮短下降時間。模擬結果顯示,在相同尺寸之驅動薄膜電晶體條件下,輸出波型之下降時間為1.56 µs,比起傳統電路架構下降時間2.04 µs,改善了約20%。然而,針對高解析度主動式矩陣有機發光二極體顯示器之需求,再提出使用低溫多晶矽薄膜電晶體設計之兩個同步式畫素電路以及一個閘極驅動電路以應用於高解析度主動式矩陣有機發光二極體顯示器。採用同步式驅動法設計之4T2C主動式有機發光二極體畫素電路能於高解析度面板中成功補償臨界電壓變異。模擬結果顯示,此電路在5.15吋FHD的面板操作中能使發光誤差率低於5%,此外電壓線電壓下降問題以及畫面閃爍現象皆受到補償及抑制。為了使電路架構精簡化,進一步提出同步式3T2C畫素電路,藉由匹配驅動薄膜電晶體的方式,該電路僅需一條控制訊號線即可成功補償。基於模擬結果顯示,當薄膜電晶體變異±0.5 V,電流誤差率皆在3.5%以內且無畫面閃爍現象。最後則針對同步式主動式矩陣有機發光二極體畫素電路所需之驅動訊號,設計出11T1C之閘極驅動電路,使得在高速操作下確保畫素能存取精確的資料電壓值。模擬結果驗證連續八級的輸出於5.15吋240赫茲FHD的面板中,且能完整的產生同步式畫素電路所需之驅動訊號。除了考慮面板中的RC負載,此11T1C閘級驅動電路亦連同3T2C畫素電路進行模擬分析,確保所提出之閘級驅動電路輸出訊號,經由負載線依然能使主動式有機發光二極體電路成功補償±0.5 V之驅動薄膜電晶體臨界電壓變異值,以提升高解析度顯示器之性能。
Low temperature poly-silicon thin-film transistors (LTPS TFTs) have characteristic of higher mobility and more stability, compared with amorphous silicon (a-Si:H) TFTs and indium-gallium-zinc oxide (a-IGZO) TFTs. Therefore, they are suitable for use in gate driver circuits and active-matrix organic light-emitting diode (AMOLED) pixel circuits. However, the process of LTPS technology is influenced by the environment temperature of excimer laser. Therefore, the TFTs scattered on different spots of panel, have different characteristics. Nowadays that people pursue high-resolution visual experience has become a trend. Pixel circuits driven by progressive scan signals are not able to deal with the variations of LTPS TFTs because of insufficient time for completing compensation when operated in high-resolution panels. In contrast, pixel circuits with simultaneous-emission (SE) driving scheme can successfully be compensated when the circuits operate in high-resolution panels because the period time for compensation is not limited by the resolution of panels and the variations of driving TFTs.
To solve the low mobility problem of a-Si:H TFTs, this thesis firstly proposes a 9T2C gate driver circuit for high-resolution active-matrix liquid crystal display. By a simple structure, the driving TFT of the circuit can remain high driving capability for discharging output node and reduce the falling time of output signals. Simulated results show that the rising time of output signals 1.56 µs, is reduced about 20%, compared to the rising time of conventional one 2.04 µs. However, for the demand of high-resolution AMOLED pixel circuits, two SE LTPS-TFT pixel circuits and one corresponding gate driver circuit are proposed for high-resolution AMOLED displays. A 4T2C pixel circuit using SE driving scheme can successfully compensate for the VTH variation of TFTs in high-resolution panels. Simulated results revel that the current error rates are below 5% when the circuit operates in 5.15 inch FHD panel. Moreover, power line I-R drops and image flickering phenomenon are compensated and repressed. For further concise circuit structure, a SE 3T2C pixel circuit is proposed. By using matching structure, the circuit can successfully compensate for the variations with only one control signal line. Based on simulated results, the image flickering is eliminated and the related current error rates are within 3.5% when threshold voltage of driving TFT varies ±0.5 V in 5.15 inch FHD panel. Lastly, 11T1C gate driver circuit is designed for the driving scheme of SE AMOLED pixel circuits, ensuring that the pixels can collect precise data voltage value in high speed operation. Simulated results indicate that the continuous-eight gate driver circuits enable to generate complete driving scheme signals for SE pixel circuit in 5.15 inch 240 Hz FHD panel. In addition, the 11T1C gate driver circuit is applied to the 3T2C pixel circuit for simulation analyzation. Therefore, the output signals of the proposed gate driver circuit through the row line to supply for AMOLED pixel circuits are ensured for achieving uniform currents by successfully detecting ±0.5 V VTH variations of driving TFT. Thereby, the performance of high-resolution displays is enhanced.
References
[1] H. Kristiansen and J. Liu, “Overview of conductive adhesive interconnection technologies for LCDs,” IEEE Trans. Comp., Packag., Manuf. Technol. A, vol. 21, no. 2, pp. 208–214, Jan. 1998.
[2] S. Y. Lee, J. W. Kwon, H. S. Kim, M. S. Choi, K. S. Byun, “New design and application of high efficiency LED driving system for RGB-LED backlight in LCD display”, Proc. IEEE PESC, pp. 1-5, 2006.
[3] Y. H. Tai, “Design and operation of TFT-LCD panels,” Wunan, 2006.
[4] R. Joshi, “Chip on glass-interconnect for row/column driver packaging,” Microelectr. J., vol. 29, pp. 343–349, Jun. 1998.
[5] J. Liu, “ACA bonding technology for low cost electronics packaging applications current status and remaining challenges,” in Proc. 4th Int.Conf. Adhesive Joining and Coating Technology Electronic Manufacturing, pp. 1–15, 2000.
[6] C. T. Liu, “Revolution of the TFT LCD technology,” J. Display Technol., vol. 3, no. 4, pp. 342–350, Dec. 2007.
[7] J. C. Hwang, “Advanced low-cost bare-DIE packaging technology for liquid crystal displays,” IEEE Trans. Comp., Packag., Manuf. Technol. A, vol. 18, no. 3, pp. 458–461, Mar. 1995.
[8] C. Hordequin, J. M. Bayot, T. Kretz, S. Yon, S. Arfuso, N.Szydlo, and H. Lebrun, “A 1” VGA LC light valve using a-Si:H TFTs with integrated drivers”, EuroDisplay 02, pp. 387–390, 2002.
[9] S. H. Lo, C. C. Wei, W. C. Lin, I. Wang, C. C. Shih, and Y. E. Wu, “Integrated gate driver circuit with one conduction path for charge-discharge,” in SID Symp. Dig., 2006, pp. 231–234.
[10] S. H. Moon, Y. S. Lee, M. C. Lee, B. H. Berkeley, N. D. Kim, and S. S. Kim, “Integrated a-Si:H TFT gate driver circuits on large area TFT-LCDs,” in SID Symp. Dig., 2007, pp. 1478–1481.
[11] S. Kunic and Z. Sego, “OLED technology and displays,” Proc. ELMAR-2012, pp. 31-35.
[12] C. L. Lin, C. D. Tu, M. C. Chuang, and J. S. Yu, “Design of bi-directional and highly stable integrated hydrogenated amorphous silicon gate driver circuits,” J. Display Technol., vol. 7, no. 1, pp. 10-18, Jan. 2011.
[13] M. Kimura and S. Imai, “Degradation evaluation of a-IGZO TFTs for application to AM-OLEDs,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 963-965, Sep. 2010.
[14] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., vol. 34, pp. 1166-1168, Sep. 2013.
[15] C. H Chiang and Y. Li, “A novel driving method for high-performance amorphous silicon gate driver circuits in flat panel display industry,” J. Display Technol., vol. 12, no. 10, Oct. 2016.
[16] H. H. Hsieh, T. T. Tsai, C. Y. Chang, H. H. Wang, J. Y. Huang, S. F. Hsu, Y. C. Wu, T. C. Tsai, C. S. Chuang, L. H. Chang, and Y. H. Lin, “A 2.4-in. AMOLED with IGZO TFTs and inverted OLED devices,” in SID Symp. Dig., 2010, pp. 140-143.
[17] J. C. Lee and J. Y. Jeong, “High speed small area reliable LTPS TFT-based level shifter for system-on-panel technology,” Proc. IEEE ICICDT, pp. 1-4, 2006-Jun.
[18] C. T. Su, P. S. Wang, and C. C. Hsu, “Effective Approaches for Low Temperature Polysilicon TFT‐LCD Post‐Mapping Yield Control Problem,” IEEE Transactions on Automation Science and Engineering, vol. 2, no. 2, pp. 198–206, Apr. 2005.
[19] T. F. Chen, C. F. Yeh, J. C. Lou, “Investigation of grain boundary control in the drain junction on laser-crystalized poly-si thin film transistors,” IEEE Electron Device Lett., vol. 24, no. 7, pp. 457-459, Jul. 2003.
[20] B. Kim, H. N. Cho, W. S. Choi, S. H. Kuk, J. S. Yoo, S. Y. Yoon, M. Jun, Y. K. Hwang, and M. K. Han, “A novel depletion-mode a-IGZO TFT shift register with a node-shared structure,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 1003-1005, Jul. 2012.
[21] W. J. Wu, L. Zhou, M. Xu, L. R. Zhang, R. H. Yao, and J. B. Peng, “An AC Driving Pixel Circuit Compensating for TFTs Threshold-Voltage Shift and OLED Degradation for AMOLED,” J. Display Technol., Vol.9, No.7, pp.572-576, Jul., 2013.
[22] C. L. Fan, Y. C. Chen, C. C. Yang, Y. K. Tsai, B. R. Hung, “Novel LTPS-TFT pixel circuit with OLED luminance compensation for 3D AMOLED displays,” J. Display Technol., vol. 12, no. 5, pp. 425-428, May 2016.
[23] G. T. Zheng, P. T. Liu, M. C. Wu, M. C. Yang, L. W. Chu, C. Y. Wu, “Low power gate driver circuits for narrow bezel panel application,” in SID Symp. Dig., vol. 43, no. 1, pp. 1076-1078, Jun. 2012.
[24] K. H. Chung, B. Y. Chung, S. I. Park, D. W. Park, S. M. Choi, K. Kim, B. H. Kim, and S. S. Kim, “Integrated pMOS gate driver for a 3D AMOLED Display,” in SID Symp. Dig., 2011, pp. 349-352.
[25] B. S. Bae, J. W. Choi, J. H. Oh, and J. Jang, “Level shifter embedded in drive circuits with amorphous silicon TFTs,” IEEE Electron Device Lett., vol. 53, no. 3, pp. 494-498, Mar. 2006.
[26] J. W. Choi, M. S. Kwon, J. H. Koo, J. H. Park, S. H. Kim, D. H. Oh, S. W. Lee, and J. Jang, “Distinguished student paper: Noble a-Si:H gate driver with high stability,” in SID Symp. Dig., 2008, pp. 1227-1230.
[27] C. L. Lin, M. H. Cheng, C. D. Tu, and M. C. Chuang, “Highly reliable integrated gate driver circuit for large TFT-LCD applications,” IEEE Electron Device Lett., vol. 33, no. 5, pp.679-681, May 2012.
[28] C. L. Lin, C. D. Tu, C. E. Wu, C. C. Hung, K. J. Gan, and K. W. Chou, “Low-power gate driver circuit for TFT-LCD application,” IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1410–1415, May 2012.
[29] L. W. Chu, P. T. Liu, and M. D. Ker, “Design of integrated gate driver with threshold voltage drop cancellation in amorphous silicon technology for TFT-LCD application,” J. Display Technol., vol. 7, no. 12, pp. 657-664, Dec. 2011.
[30] Y. C. Sung and O. K. Kwon, “Low-cost TFT-LCDs with pre-emphasis driving method for large-size and high-definition TVs,” IEEE Trans. Consumer Electronics, vol. 53, no. 4, pp. 1674-1681, Nov. 2007.
[31] J. H. Oh, J. H. Hur, Y. D. Son, K. M. Kim, S. H. Kim, J. W. Choi, S. M. Hong, J. O Kim, B. S. Bae, and J. Jang, “2.0 inch a-Si:H TFT-LCD with low noise integrated gate driver,” in SID Symp. Dig., 2005, pp. 942-945.
[32] S. H. Lo, C. C. Wei, W. C. Lin, I. Wang, C. C. Shih, and Y. E. Wu,“Integrated gate driver circuit with one conduction path for charging-discharge,” in SID Symp. Dig., 2006, pp. 231-234.
[33] H. C. Seol, J. H. Ra, S. K. Hong, and O. K. Kwon, “An AMOLED panel test system using universal data driver ICs for various pixel structures,” IEEE Transactions on Electron Devices, vol. 64, no. 1, Jan. 2017
[34] C. L. Lin, P. S. Chen, M. Y. Deng, C. E. Wu, W. C. Chiu, and Y. S. Lin, “UHD AMOLED driving scheme of compensation pixel and gate driver circuits achieving high-speed operation,” IEEE Journal of the Electron Device Society, vol. 6, pp. 26-33, Dec. 2017.
[35] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129-131, Feb. 2007.
[36] C. L. Lin, P. S. Chen, M.-H. Cheng, Y. T. Liu, F. H. Chen, “A three-transistor pixel circuit to compensate for threshold voltage variations of LTPS TFTs for AMOLED displays,” J. Display Technol., vol. 11, no. 2, pp. 146-148, Feb. 2015.
[37] C. C. Hsu, C. M. Lu, P. C. Lai, P. S. Chen, and C. L. Lin, “Pixel circuit with external current source to achieve fast compensation for variation of LTPS TFTs for AMOLED displays,” International Workshop on Active-Matrix Flat Panel Displays and Devices, pp. 147-150, 2017.
[38] B. W. Lee, S. M. Han, S. D. Sung, I. H. Ji, K. S. Shin, B. H. Berkeley, and S. S. Kim, “120 Hz 3D driving for AMOLED with interleaved scan and emission operation,” in SID Symp. Dig., Los Angeles, CA, USA, 2011, pp. 264– 267.
[39] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving Schemes for a-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, no. 2, pp. 267-277, Dec. 2005.
[40] C. L. Lin, P. C. Lai, P. C. Lai, P. S. Chen, and W. L. Wu, “Pixel circuit with parallel driving scheme for compensating luminance variation based on a-IGZO TFT for AMOLED displays,” J. Display Technol., vol. 12, no.12, Dec. 2016.
[41] P. S. Chen, Y. T. Liu, F. H. Chen, and C. L. Lin, “A simple pixel circuit using LTPS TFTs with mirror compensation for AMOLED displays,” 21th International Display Workshops, pp. 323-325, 2014.
[42] K. Y. Lee and P. C. P. Chao, “Sensing TFT vth by an external algorithm to compensate non-uniformity on AMOLED panel,” Proc. Sensors, pp. 1-4, 2012.
[43] C. L. Lin, M. Y. Deng, C. E. Wu, C. C. Hsu, and C. L. Lee, “Hydrogenated amorphous silicon gate driver with low leakage for thin-film transistor liquid crystal display applications,” IEEE Transactions on Electron Devices, vol. 64, no. 8, Aug. 2017.
[44] C. Liao, C. He, T. Chen, D. Dai, S. Chung, T. S. Jen, and S. Zhang, “Design of integrated amorphous-silicon thin-film transistor gate driver,” J. Display Technol., vol. 9, no. 1, pp. 7-16, Jan. 2013.
[45] C. Liao, Z. Hu, D. Dai, S. Chung, T. S. Jen, and S. Zhang, “A compact bi-direction scannable a-Si:H TFT gate driver,” J. Display Technol., vol. 11, no. 1, pp. 3-5, Jan. 2015.
[46] C. L. Lin, F. H. Chen, W. C. Ciou, Y. W. Du, C. E. Wu, and C. E. Lee, “Simplified gate driver circuit for high-resolution and narrow-bezel thin-film transistor liquid crystal display applications,” IEEE Electron Device Lett., vol. 36, no. 8, pp. 808-810, Aug. 2015.
[47] C. H. Chiang and Y. Li, “Low power and high driving capability of amorphous silicon gate driver circuit,” J. Display Technol., vol. 12, no. 1, pp. 55-61, Jan. 2016.
[48] C. L. Lin, P. C. Lai, P. C. Lai, T. C. Chu, and C. L. Lee, “Bidirectional gate driver circuit using recharging and time-division driving scheme for in-cell touch LCDs,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, Apr. 2018.
[49] C. L. Lin, F. H. Chen, M. X. Wang, P. C. Lai, and C. H. Tseng, “Gate driver based on a-Si:H thin-film transistors with two-step-bootstrapping structure for high-resolution and high-frame-rate displays,” IEEE Transactions on Electron Devices, vol. 64, no. 8, Aug. 2017.
[50] N. H. Keum, H. J. In, K. W. Oh, and O. K. Kwon, “Life time extension method for simultaneous emission driving AMOLED displays,” IEEE Electronics Letters, vol. 48, no. 23, Nov. 2012.
校內:2023-07-01公開