| 研究生: |
簡士勛 Chien, Shih-Hsun |
|---|---|
| 論文名稱: |
以輸出選擇方法為基礎之輸出響應壓縮技術 An Output Selection Scheme for Test Response Compaction |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 測試輸出響應壓縮 、測試時間 |
| 外文關鍵詞: | test response compaction, test application time |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體製程的進步,複雜電路的測試資料量大幅增加的問題已經成為非常重要的議題。在本篇論文中,我們發展了一個以近幾年被提出的輸出響應選擇方法為基礎的嶄新演算法來達到輸出響應資料壓縮的目的,此技術主要的想法是利用電路中的錯誤常常可經由一個以上的輸出埠所觀察到,因此我們只需透過適當的選擇機制,在每個測試時脈週期內選擇少部分的錯誤響應資料觀察,即可以達到完全的錯誤涵蓋率以及輸出響應資料量壓縮的目的。
我們所提出的輸出選擇演算法可以支援兩種硬體架構,這兩種架構主要是由數個累加器/計數器與多工器組合而成,所以需要的控制電路非常的簡單。由於直接觀察輸出響應,所以不會有失真的問題發生而且可以很容易的處理不確定值問題。我們在設計演算法同時也考慮了控制訊號共享的機制並且應用了靜態測試向量壓縮方法來降低測試資料量。
實驗結果顯示,對於ISCAS89及ITC99的標準測試電路而言,平均僅需要觀察7.63%和7.78%的輸出響應資料即可以達到完整的錯誤涵蓋率。
Large test volume resulted from the advanced semiconductor manufacturing has become a significant problem in the past years. In this thesis, we propose a test scheme based on a novel concept called output selection for achieving test response compaction. The basic idea is that since faults are usually detected by more than one output ports, we can achieve complete fault coverage and test response compaction through directly selecting a subset of output responses for observation. Due to there is no xor-based compactors or feedback configurations involved, aliasing and unknown value problems can be easily dealt with. Efficient selection algorithms are developed to determine how to select the necessary output responses for observation according to the control of the proposed selection logics which consist of numbers of accumulators/counters and multiplexers. Control data sharing and a static test set compaction process are also taken into consideration in the selection algorithms so as to minimize the required test data volume.
Experimental results show that in average observing only 7.63% and 7.78% test responses are enough to detect all detectable faults on ISCAS89 and ITC99 benchmarks respectively.
[1] S. Mitra, M. Mitzenmacher, S. S. Lumetta, N. Patil, “X-Tolerant Test Response Compaction,” IEEE Design & Test of Computers, vol. 22, pp. 566-574, 2005.
[2] C. T. Chao, K. T. Cheng, S. Wang, and S. Chakradhar, “Unknown-Tolerance Analysis and Test-Quality Control for Test Response Compaction using Space Compactors,” in Proc. Design Automation Conf., pp. 1083-1088, 2006.
[3] R. Garg, R. Putman, and N. A. Touba, “Increasing Output Compaction in Presence of Unknowns using an X-Canceling MISR with Deterministic Observation,” VLSI Test Symp., pp.35-42, 2008.
[4] J. Rajski, J. Tyszer, G. Mrugalski, W.-T. Cheng, N. Mukherjee and M. Kassab, "X-Press: Two-Stage X-Tolerant Compactor With Programmable Selector," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 1, pp. 147-159, Jan. 2008.
[5] J. Rajski, J. Tyszer, C. Wang and S. M. Reddy, "Convolutional compaction of test responses," in Proc. International Test Conference, 2003, pp. 745-754.
[6] S. R. Das, A. Hossain, S. Biswas, E. M. Petriu, M. H. Assaf, W.-B. Jone and M. Sahinoglu, “On a New Graph Theory Approach to Designing Zero-Aliasing Space Compressors for Built-In Self-Testing,” IEEE Trans. on Instrumentation and Measurement, vol. 57, no. 10, pp. 2146-2168, Oct. 2008.
[7] A. Hossain, S. R. Das, A. R. Nayak, E. M. Petriu, S. Biswas, and M. Sahinoglu, “Further Studies on Zero-Aliasing Space Compression Based on Graph Theory,” Proc. IMTC, pp. 1-6, 2007
[8] J. Ding, D. Moloney, and X. Wand, “Aliasing-free space and time compactions with limited overhead,” in Proc. International Symposium on Quality Electronic Design, pp. 355-360, 2000.
[9] Y. Fujiwara and C. J. Colbourn, "A Combinatorial Approach to X-Tolerant Compaction Circuits," IEEE Trans. on Information Theory, vol. 56, no. 7, pp. 3196-3206, July 2010.
[10] J. Park and S. Kang, “FiX-compact: A new X-tolerant response compaction scheme for fixed unknown logic values,” International SoC Design Conf., pp. 209-212, 2010.
[11] P. Wohl, J.A. Waicukauski, S. Ramnath, “Fully X-tolerant Combinational Scan Compression,” IEEE International Conf., pp.1-10, 2007.
[12] M. C.-T. Chao, S. Wang, S. T. Chakradhar, and, K. T. Cheng, “Response shaper: a novel technique to enhance unknown tolerance for output response compaction,” IEEE Trans. on Computer-Aided Design., pp. 80-87, 2005.
[13] S. Mitra, and K. S. Kim, “X-compact: an efficient response compaction technique,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, pp. 421-432, 2004.
[14] S. Wang, K. J. Balakrishnan, and W. Wei, “X-Block: An Efficient LFSR Reseeding-Based Method to Block Unknowns for Temporal Compactors,” IEEE Trans. on Computers, vol. 57, pp. 978-989, 2008.
[15] S. Wang, W. Wei, S. T. Chakradhar, “Unknown Blocking Scheme for Low Control Data Volume and High Observability,” Proc. of the Design, Automation and Test in Europe, pp. 33-1138, 2007.
[16] S. Wang, K. J. Balakrishnan, and, S. T. Chakradhar,” Efficient unknown blocking using LFSR reseeding,” in Proc. Design, Automation and Test in Europe, pp. 1051-1052, 2006.
[17] Y. Shi, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “Unknown response masking with minimized observable response loss and mask data,” IEEE Asia Pacific Conf. on Circuits and Systems, pp. 1779-1781, 2008.
[18] T. Rabenalt, M. Goessel, and A. Leininger, “Masking of X-values by Use of a Hierarchically Configurable Register,” IEEE European Test Symp., pp. 149-154, 2009.
[19] Y. Shi, N. Togawa, M. Yanagisawa and T. Ohtsuki, “GECOM: Test Data Compression Combined with All Unknown Response Masking,” in Proc. Asia and South Pacific Design Automation Conf., pp.577-582, 2008.
[20] L.-T. Wang, X. Wen, H. Furukawa, F.-S. Hsu, S.-H. Lin, S.-W. Tsai, K. S. Abdel-Hafez, and S. Wu, “VirtualScan: A New Compressed Scan Technology for Test Cost Reduction,” Proc. International Test Conf., pp. 916-925, 2004.
[21] K.-J. Lee, W.-C. Lien and T.-Y. Hsieh, “Test Response Compaction via Output Bit Selection,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, accepted for publication, 2011.
[22] P. Wohl, J. A. Waicukauski, S. Patel, and M. Amin, “X-Tolerant Compression and Application of Scan-ATPG Patterns in a BIST Architecture,” in Proc. Int’l Test Conf., pp. 727-736, 2003.
[23] P. Wohl, J. A. Waicukauski, and S. Patel, “Scalable Selector Architecture for X-Tolerant Deterministic BIST,” in Proc. Design Automation Conf., pp. 934-939, 2004.
[24] Y. H. Wu, “The Counter-Based Output Selection Method with Unknown-Preventing Capability,” Master Thesis, Dept. of E.E., NCKU, Taiwan, July 2008.
[25] M. Alioto and G. Palumbo, "Interconnect-Aware Design of Fast Large Fan-In CMOS Multiplexers," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 54, no.6, pp. 484-488, Jun. 2007.