簡易檢索 / 詳目顯示

研究生: 徐永翰
Hsu, Yung-Han
論文名稱: 以二維輸砂模式探討串壩改善對河道環境之影響
Analysis of Channel Effect of Dam Removal Using Two Dimensional Sediment Transport Model
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 105
中文關鍵詞: 七家灣溪防砂壩改善串壩二維輸砂模式
外文關鍵詞: Qijiawan creek, Dam removal, Multiple dam, SRH-2D
相關次數: 點閱:75下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 早期台灣為了減少水庫淤積,於水庫上游集水區建立多座防砂壩,隨著時間推移,防砂壩漸漸淤滿並影響其原本設計功能,同時因為壩體造成的河道不連續性產生生態衝擊的顧慮。本研究以七家灣溪為例,其中一號壩已於2011年改善完成,二號壩已於2004年自然潰壩,三、四號壩面臨淤滿以及壩體破損的情況。本研究為改善河道的連通性以及壩體淤滿而有潰壩之疑慮,以三號壩以及四號壩作為改善目標。
    針對七家灣溪一號壩前人研究包括物理模型、後續監測以及數值模式的適用性等研究,此案例為台灣壩體改善之研究提供一個難得的經驗。故本研究透過現地調查蒐集三、四號壩資料,並參考前人研究成果,以SRH-2D模擬進行壩體改善後的影響,以不同改善方案、方式搭配颱風事件作為模擬情境,其中改善方案共分為(1)僅改善三號壩、(2)僅改善四號壩、(3)同時改善三、四號壩。並以對下游之衝擊、河防安全、生態棲地三項指標進行初步評估,後續再探討對河道之影響、串壩之間的交互影響。
    由於本研究是以數值模式預測壩體改善後的變化,過往相關研究雖指出泥砂運移量推估之不確定性較高,但透過與一號壩案例的實際觀測值比較,兩者呈現相同趨勢,顯示模擬結果有其一定的參考性。
    壩體改善須考慮各面向的影響,根據不同需求、目的會有不同之決策。本研究針對各情境的模擬結果有助於日後主管機關依其目的與需求去選擇三、四號壩壩體最合適之改善方案與方式。例如:基於對河道環境的衝擊與串壩間的影響,本研究建議改善四號壩1/2壩高為最佳改善方式。

    In order to reduce the reservoir sedimentation in Taiwan, a number of check dams have been built in the upstream catchment. As time goes by, the check dams have gradually filled with sediment that affects the original design functions and because of the discontinuity of the channel caused by the check dam, there are concerns about ecological impact. The study takes Qijiawan Creek as an example, where, Dam NO.1 was removed in 2011, and Dam NO.2 was naturally broken in 2004. In order to improve the connectivity of the river, NO.3 and NO.4 dams are the focus of this study.
    Previous studies of Qijiawan dam NO.1, including physical models, field survey, and the applicability of numerical models, provide a rare experience for the study of dam removal in Taiwan. Therefore, this research collected the relevant data of NO.3 and NO.4 dams by field survey and refered to previous research.By using SRH-2D to simulate the impact of dam removal, different improvement plans and methods combined with typhoon events were simulated. In addition, imulation results were further assessed by three indicators, i.e. downstream impact,river protection safety, ecological habitat. The impact on the river and the interactions between two dams were then discussed.
    Although previous related studies have pointed out that the uncertainty of the estimating the sediment transport amount is high, the results obtained in this study showed the similar trend with the previous studies on NO.1 dam, indicating the applicability of the simulation results.
    Dam removal must consider the impact of various aspects and then decisions can be made according to different needs and purposes. The simulation results of this study will help the authority as a decision support. For example, if the impact on the river environment and the impact between two dams were focused, this study suggests that the potential best improvement method is to removal the 1/2 height of the NO.4 dam.

    中文摘要I 英文摘要II 致謝VI 目錄VII 表目錄X 圖目錄XI 第一章 緒論1 1.1前言1 1.2 研究動機與目的2 1.3論文架構3 第二章 文獻回顧5 2.1 壩體管理之研究5 2.2 國外案例10 2.3 國內案例15 2.4 動床模式18 2.5 小結21 第三章 研究區域與方法22 3.1 研究區域概述22 3.1.1 現地調查23 3.1.2水文資料29 3.1.3防砂壩32 3.2 數值模式36 3.2.1 SRH-2D模式介紹36 3.2.2水流控制方程式37 3.2.3泥砂傳輸控制方程式39 3.3 模式參數與設定40 3.3.1水理模式40 3.3.2動床模式43 3.4 情境設計47 3.4.1壩體改善方案47 3.4.2壩體改善方式47 3.4.3 壩體改善後不同颱風事件之衝擊49 3.5 評估指標52 3.5.1泥砂通量(Total Sediment Volume through Monitor Line)52 3.5.2 崩塌地坡腳侵蝕52 3.5.3生態棲地53 3.5.4 小結56 3.6 主成分分析57 3.7 研究假設與限制58 第四章 結果與討論59 4.1 水理模式59 4.2 動床模式61 4.3 各情境三項指標之結果62 4.4 評估所有情境70 4.4.1 僅改善四號壩75 4.4.2 僅改善三號壩77 4.4.3同時改善三、四號壩82 4.4.4 改善串壩之影響85 4.5 與一號壩案例之比較分析87 4.5.1 泥砂通量87 4.5.2 泥砂粒徑90 第五章 結論與建議94 5.1 結論94 5.2 建議96 參考文獻98

    1. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.
    2. Cannatelli, K. M., & Curran, J. C. (2012). Importance of hydrology on channel evolution following dam removal: case study and conceptual model. Journal of Hydraulic Engineering, 138(5), 377-390.
    3. Carter, C. D., & Marks, J. C. (2007). Influences of travertine dam formation on leaf litter decomposition and algal accrual. Hydrobiologia, 575(1), 329-341.
    4. Doyle, M. W., Harbor, J. M., & Stanley, E. H. (2003). Toward policies and decision-making for dam removal. Environmental Management, 31(4), 0453-0465.
    5. Doyle, M. W., Stanley, E. H., & Harbor, J. M. (2002). GEOMORPHIC ANALOGIES FOR ASSESSING PROBABLE CHANNEL RESPONSE TO DAM REMOVAL 1. JAWRA Journal of the American Water Resources Association, 38(6), 1567-1579.
    6. Doyle, M. W., Stanley, E. H., & Harbor, J. M. (2003). Channel adjustments following two dam removals in Wisconsin. Water Resources Research, 39(1).
    7. Draut, A., & Ritchie, A. C. (2015). Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large‐scale dam removal. River Research and Applications, 31(1), 42-61.
    8. Draut, A. E., Logan, J. B., & Mastin, M. C. (2011). Channel evolution on the dammed Elwha River, Washington, USA. Geomorphology, 127(1-2), 71-87.
    9. East, A. E., Pess, G. R., Bountry, J. A., Magirl, C. S., Ritchie, A. C., Logan, J. B., . . . Duda, J. J. (2015). Reprint of: Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change. Geomorphology, 246, 687-708.
    10. Egan, J. M., Pizzuto, J., & Mallonee, J. (2001). Geomorphic effects of dam removal on the Manatawny Creek, Pottstown, Pennsylvania. Paper presented at the AGU Fall Meeting Abstracts.
    11. Foley, M. M., Bellmore, J., O'Connor, J. E., Duda, J. J., East, A. E., Grant, G., . . . Connolly, P. J. (2017). Dam removal: Listening in. Water Resources Research, 53(7), 5229-5246.
    12. G&G Associates (2004). Condit hydroelectric project removal, sediment behavior analysis report, Prepared for PacifiCorp, Portland, Oreg.
    13. Grant, G. E., & Lewis, S. L. (2015). The remains of the dam: what have we learned from 15 years of US dam removals? In Engineering Geology for Society and Territory-Volume 3 (pp. 31-35): Springer.
    14. Kleinfelder (2007). Sediment sampling and analysis report, Northwestern Lake, Condit Hydroelectric Project, Prepared for PacifiCorp Energy,Beaverton, Oreg.
    15. Kibler, K., Tullos, D., & Kondolf, M. (2011). Evolving Expectations of Dam Removal Outcomes: Downstream Geomorphic Effects Following Removal of a Small, Gravel‐Filled Dam 1. JAWRA Journal of the American Water Resources Association, 47(2), 408-423.
    16. Kibler, K. M., Tullos, D. D., & Kondolf, G. M. (2011). Learning from dam removal monitoring: challenges to selecting experimental design and establishing significance of outcomes. River Research and Applications, 27(8), 967-975.
    17. Lai, Y. (2008). SRH-2D Theory and User’s Manual version 2.0. Technical Service Center, Bureau of Reclamation: Denver, CO, USA.
    18. Lewis, S. E., Bainbridge, Z. T., Kuhnert, P. M., Sherman, B. S., Henderson, B., Dougall, C., . . . Brodie, J. E. (2013). Calculating sediment trapping efficiencies for reservoirs in tropical settings: a case study from the Burdekin Falls Dam, NE Australia. Water Resources Research, 49(2), 1017-1029.
    19. Mead & Hunt, Kleinfelder, and JR Merit (2011), Project removal design report, Condit Hydroelectric Project Decommissioning FERC Project No. 2342, Prepared for PacifiCorp Energy.
    20. Major, J.J., East , A.E., O’Connor, J.E., Grant, G.E., Wilcox, A.C., Magirl, C.S., Collins, M.J., and Tullos, D.D., (2017). Geomorphic response to U.S. Dam Removals—A two-decade perspective, in Gravel-Bed Rivers: Processes and Disasters, edited by D. Tsutsumi and J. Laronne, 355–383.
    21. Major, J.J., O’Connor, J.E., Podolak, C.J., Keith, M.K., Grant, G.E., Spicer, K.R., Pittman, S., Bragg, H.M., Wallick, J.R., Tanner, D.Q., Rhode, A., and Wilcock, P.R., (2012). Geomorphic response of the Sandy River, Oregon, to removal of Marmot Dam. USGS Professional Paper, 1792, 64.
    22. Pearson, A. J., Snyder, N. P., & Collins, M. J. (2011). Rates and processes of channel response to dam removal with a sand‐filled impoundment. Water Resources Research, 47(8).
    23. Pizzuto, J. (2002). Effects of Dam Removal on River Form and Process: Although many well-established concepts of fluvial geomorphology are relevant for evaluating the effects of dam removal, geomorphologists remain unable to forecast stream channel changes caused by the removal of specific dams. BioScience, 52(8), 683-691.
    24. Podolak, C. J., & Doyle, M. W. (2015). Reservoir sedimentation and storage capacity in the United States: Management needs for the 21st century. Journal of Hydraulic Engineering, 141(4), 02515001.
    25. Poeppl, R., Coulthard, T., Keesstra, S., & Keiler, M. (2019). Modeling the impact of dam removal on channel evolution and sediment delivery in a multiple dam setting. International Journal of Sediment Research, 34(6), 537-549.
    26. Pohl, M. M. (2002). Bringing down our dams: Trends in American dam removal rationales 1. JAWRA Journal of the American Water Resources Association, 38(6), 1511-1519.
    27. Randle, T. J., Bountry, J. A., Ritchie, A., & Wille, K. (2015). Large-scale dam removal on the Elwha River, Washington, USA: Erosion of reservoir sediment. Geomorphology, 246, 709-728.
    28. Ritchie, A. C., Warrick, J. A., East, A. E., Magirl, C. S., Stevens, A. W., Bountry, J. A., . . . Duda, J. J. (2018). Morphodynamic evolution following sediment release from the world’s largest dam removal. Scientific reports, 8(1), 1-13.
    29. Stanley, E. H., & Doyle, M. W. (2003). Trading off: the ecological effects of dam removal. Frontiers in Ecology and the Environment, 1(1), 15-22.
    30. The H. John Heinz III Center for Science, Economics and the Environment (2002). Dam Removal: Science and Decision Making. pp.79-95.
    31. Tullos, D., & Wang, H. W. (2014). Morphological responses and sediment processes following a typhoon‐induced dam failure, Dahan River, Taiwan. Earth Surface Processes and Landforms, 39(2), 245-258.
    32. Tullos, D. D., Collins, M. J., Bellmore, J. R., Bountry, J. A., Connolly, P. J., Shafroth, P. B., & Wilcox, A. C. (2016). Synthesis of common management concerns associated with dam removal. JAWRA Journal of the American Water Resources Association, 52(5), 1179-1206.
    33. Wang, H. W., & Kondolf, G. M. (2014). Upstream sediment‐control dams: five decades of experience in the rapidly eroding Dahan River Basin, Taiwan. JAWRA Journal of the American Water Resources Association, 50(3), 735-747.
    34. Wang, H. W., & Kuo, W. C. (2016). Geomorphic responses to a large check‐dam removal on a mountain river in Taiwan. River Research and Applications, 32(5), 1094-1105.
    35. Wunderlich, R.C., Winter, B.D., and Meyer, J.H., (1994). Restoration of the Elwha River ecosystem. Fisheries 19(8):11-19.
    36. Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2), 120-128.
    37. Wilcox, A. C., O'Connor, J. E., & Major, J. J. (2014). Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington. Journal of Geophysical Research: Earth Surface, 119(6), 1376-1394.
    38. Wildman, L. A., & MacBroom, J. G. (2005). The evolution of gravel bed channels after dam removal: Case study of the Anaconda and Union City Dam removals. Geomorphology, 71(1-2), 245-262.
    39. Yang, C. T. (1973). Incipient motion and sediment transport. Journal of the hydraulics division, 99(10), 1679-1704.
    40. Yang, C. T. (1984). Unit stream power equation for gravel. Journal of Hydraulic Engineering, 110(12), 1783-1797.
    41. Yang, C. T., & Huang, C. (2001). Applicability of sediment transport formulas. International Journal of Sediment Research, 16(3), 335-353.
    42. 王筱雯(2010)。七家灣溪一號壩壩體及棲地改善工程-泥砂衝擊物理模型及數值分析。內政部營建署雪霸國家公園管理處。
    43. 王筱雯、郭偉丞、張家豪(2013)。七家灣溪拆壩後之河道演變模式。中華水土保持學報。44(4), 271-281。
    44. 王筱雯(2008)。107年七家灣溪水文泥砂監測。內政部營建署雪霸國家公園管理處。
    45. 水土保持局(2008)。防砂設施保育處理技術之研發與應用。行政院農業委員會。
    46. 水土保持局(2011d)。水土保持防砂工程防砂整備之推估與應用。行政院農業委員會。
    47. 水利署(2019)。中華民國一百零八年台灣水文年報。經濟部。
    48. 台灣省林務局(1991)。台灣省近期防砂壩現況調查報告。行政院農業委員會。
    49. 台灣省林務局(1992)。台灣省近期防砂壩現況調查報告。行政院農業委員會。
    50. 水土保持局(2017)。水土保持手冊。行政院農業委員會。
    51. 汪靜明(2000)。大甲溪水資源環境教育。經濟部水資源局。第30-34頁。
    52. 吳俊鋐、陳樹群(2004)。水土保持學報。36(4), 295-306。
    53. 林欣怡(2008)。防砂壩移除對河床變遷影響之研究-以巴陵壩為例。國立台灣大學土木工程學系碩士論文。取自https://hdl.handle.net/11296/39ju7z
    54. 周明坤(1987)。防砂壩上游河床之沖淤變化觀測與試驗研究。國立中興大學水土保持學系碩士論文。取自https://hdl.handle.net/11296/ycu7t6
    55. 松村和樹、中筋章人、井上公夫。(1998)。土砂災害調查
    56. 陳思廷(2008)。不同輸砂公式對河道沖淤影響之研究。國立交通大學土木工程學系碩士論文。取自https://hdl.handle.net/11296/m44nr9
    57. 陳樹群、邱渝方(2019)。會呼吸的防砂壩。科學發展。560期。
    58. 張志豪(2013)。壩體改善工程對於物理棲地之影響-以七家灣溪一號壩為例。逢甲大學水利工程與資源保育學系碩士論文。取自https://hdl.handle.net/11296/rwc386
    59. 連惠邦、蔡易達(2013)。水土保持防砂工程方砂量計量模式之建立與應用。 中華水土保持學報。44(4), 351-362。
    60. 莊明德(2015)。河川棲地多樣性評估河川環境流量之研究。經濟部水利署水利規劃試驗所。
    61. 郭偉丞、郭上琳、蔡亦睿、張家豪、王筱雯(2014)。防砂壩拆除對七家灣溪河床質組成變化之探討。工程環境會刊。(33), 59-70。
    62. 郭偉丞(2015)。拆壩後河相演變及輸砂模式適用性之研究。國立成功大學水利及海洋工程學系博士論文。取自https://hdl.handle.net/11296/6j8c9n
    63. 郭上琳(2015)。台灣壩體拆除決策流程之建立。國立成功大學水利及海洋工程學系碩士論文。取自https://hdl.handle.net/11296/brkk56 
    64. 葉昭憲、段錦浩、連惠邦(1998)。七家灣溪河床棲地改善之試驗研究。內政部營建署雪霸國家公園管理處。
    65. 葉昭憲、段錦浩、黃靖柏、林世弘(2007)。七家灣溪壩體改善研究評估。內政部營建署雪霸國家公園管理處。
    66. 鄭因哲(2011)。壩體移除對河道地形變遷影響之研究。國立成功大學水利及海洋工程學系碩士論文。取自https://hdl.handle.net/11296/scaqvq
    67. 賴承農、許振崑、林柏勳、簡以達、蔡明發(2014)。曾文及南化水庫集水區土砂防治量比較研究。中華水土保持學會年會及學術研討會論文集。
    68. 謝惠紅、鄭士仁、劉璟燁、周世昌、蕭博仁(2006)。夏季日降雨量空間分佈特性之研究。農業工程學報。52(1), 47-55。

    下載圖示 校內:2023-06-28公開
    校外:2023-06-28公開
    QR CODE