簡易檢索 / 詳目顯示

研究生: 陳冠廷
Chen, Guan-Ting
論文名稱: 應用雙層電極結合微孔洞結構於微粒子捕捉及阻抗量測
Particle Trapping and Impedance Measurement Using Bilayer Electrodes Integrated with Microcavity Structure
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 89
中文關鍵詞: 微孔洞二氧化碳雷射微粒子捕捉雙層電極阻抗量測
外文關鍵詞: microcavity, CO2 laser, particle trapping, bilayer electrodes, impedance measurement
相關次數: 點閱:169下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於微機電製程技術穩定的發展,使得微流道晶片於近10年來快速的崛起。微流道晶片具有可微小型化、大量製造、與低成本等特性,相較於傳統的晶片裝置,可以運作的更有效率。
    本論文提出微孔洞結構,用於微粒子捕捉以及阻抗量測。運用二氧化碳雷射及電鍍技術,實現可以捕捉直徑15 μm微粒子及阻抗量測的微孔洞量測結構。藉由電鍍的技術,在微孔洞兩側建構出雙層量測電極。此技術可以使下量測電極往孔洞處延伸沉積,除了用以提升量測的準確度之外,也可以縮小孔洞的下孔徑,有利於微粒子的捕捉。阻抗量測是一種可以用來區分且分析不同待測物電特性的技術。經實驗的結果,本研究研製出的微流道晶片,可區分出不同的溶液、成功地捕捉到微粒子,並量測出捕捉前後的阻抗差異。因此,本捕捉量測晶片未來可運用於生物醫學檢測上的應用。

    With steady development of the processing techniques for Mi-cro-Electro-Mechanical System (MEMS), microfluidic chips have rapidly grown in the past 10 years. Microfluidic chips have the advantages of mass production, miniaturization, and low cost. Compared to conventional devices, these chips are more efficient to be operated.
    This study presented the capability of particle trapping and impedance measurement with the microcavity configuration. Carbon dioxide (CO2) laser and electroplating techniques were used to fabricate the microcavity structure which can capture 15 μm particles and perform impedance measurement. Electroplating is used to fabricate two layers of measurement electrodes on the both sides of the microcavity. This method also can make bottom electrode spread into the microcavity to increase measurement accuracy and shrink the exit aperture to around 10 μm for particle trapping. Electrical impedance spectroscopy (EIS) technique was used to analyze the electrical properties of different objects under measurement. The experimental results show that this device can distinguish different solutions with different concentration, capture particles successfully, and tell apart the difference of impedance between particle and PBS solution. Therefore, this device might have the potential to be applied in biological detection in the future.

    中文摘要 I ABSTRACT II ACKNOWLEDGE III CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 1-1 Background and Motivation 1 1-1-1 Background 1 1-1-2 Motivation 2 1-2 Literature Review 4 1-2-1 Introduction to MEMS and Lab-on-a-chip 4 1-2-2 Introduction to Cell Trapping 4 1-2-3 Mechanical and Hydrodynamic Trapping Mechanism 7 1-2-4 Introduction to Electrical Impedance Spectroscopy 11 1-3 Organization of the Dissertation 12 CHAPTER 2 METHOD AND PRINCIPLE 13 2-1 Photoresist AZ P4620 Photolithography Process 13 2-2 CO2 Laser Drilling 18 2-3 Electroplating 23 CHAPTER 3 MATERIAL AND FABRICATION 31 3-1 Introduction to Instruments 32 3-1-1 Introduction to CO2 Laser Micromachining System 32 3-1-2 Introduction to 3D Laser Scanning Confocal Microscope 34 3-1-3 Other Instruments 35 3-2 Chip Fabrication 37 3-2-1 Simulation to Measurement Electrodes 38 3-2-2 Introduction to Microcavity Fabrication 42 3-2-3 Introduction to Microelectrode Fabrication 46 3-2-4 Microfluidic Channel and Chamber Fabrication 53 CHAPTER 4 EXPERIMENTAL SETUP AND MEASUREMENT RESULT 57 4-1 Experimental Setup 57 4-1-1 Impedance Measurement System 57 4-1-2 Calibration and Error Caused by Contact Resistance 59 4-1-3 Particle Preparation 64 4-1-4 Experimental Setup 65 4-2 Measurement Result 66 4-2-1 The Influence of Electrode Defects on Impedance Measurement 66 4-2-2 The Impedance Measurement of Different Solutions 71 4-2-3 Particle Trapping and Impedance Measurement 73 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 81 REFERENCES 83

    [1] H. E. Ayliffe, A. B. Frazier, and R. D. Rabbitt, “Electric impedance spectroscopy using microchannels with integrated metal electrodes,” Journal of Microelectromechanical Systems, vol. 8, pp. 50–57, 1999
    [2] W. Gu and Y. Zhao, “Cellular electrical impedance spectroscopy: an emerging technol-ogy of microscale biosensors,” Expert Review of Medical Devices, vol. 7, No. 6, pp. 767–779, 2010
    [3] D. Mondal, C. R. Chaudhuri, L. Das, and J. Chatterjee, “Microtrap electrode devices for single cell trapping and impedance measurement,” Biomedical Microdevices, vol. 14, pp. 955–964, 2012
    [4] N. C. Chen, C. H. Chen, M. K. Chen, L. S. Jang, and M. H. Wang, “Single-cell trapping and impedance measurement utilizing dielectrophoresis in a parallel-plate microfluidic device,” Sensors and Actuators B, vol. 190, pp. 570– 577, 2014
    [5] J. L. Hong, K. C. Lan, and L. S. Jang, “Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement,” Sensors and Actuators B, vol. 173, pp. 927–934, 2012
    [6] T. A. Nguyen, T. I. Yin, D. Reyes, and G. A. Urban, “Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes,” Analytical Chemistry, vol. 85, pp. 11068−11076, 2013
    [7] T. R. Sodunke, K. K. Turner, S. A. Caldwell, K. W. McBride, M. J. Reginato, and H. M. Noh, “Micropatterns of Matrigel for three-dimensional epithelial cultures,” Biomaterials, vol. 28, pp. 4006–4016, 2007
    [8] R. S. Fischer, K. A. Myers, M. L. Gardel, and C. M. Waterman, “Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior,” Nature Protocols, vol. 7, No. 11, pp. 2056-2066, 2012
    [9] W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jckson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavi-ties for single cell studies,” Nano Letters, DOI: 10.1021/nl4042565, 2014
    [10] D. Herrmann, J. R. W. Conway, C. Vennin, A. Magenau, W. E. Hughes, J. P. Morton, and P. Timpson, “Three-dimensional cancer models mimic cell–matrix interactions in the tumour microenvironment,” Carcinogenesis, DOI: 10.1093/carcin/bgu108, 2014
    [11] H. He, D. C. Chang, and Y. K. Lee, “Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells,” Bioe-lectrochemistry, vol. 70, pp. 363–368, 2007
    [12] S. Y. Lai, S. L. Tsai, M. H. Wang, M. K. Chen, and L. S. Jang, “Effect of cell position on impedance measurement in microfluidic channel with planar microelectrodes and a three-pillar structure,” Japanese Journal of Applied Physics, vol. 51, pp. 097001, 2012
    [13] Y. Cho, H. S. Kim, A. B. Frazier, Z. G. Chen, D. M. Shin, and A. Han, “Whole-cell impedance analysis for highly and poorly metastatic cancer cells,” Journal of Microe-lectromechanical Systems, vol. 18, pp. 808-817, 2009
    [14] K. F. Lei, M. H. Wu, C. W. Hsu, and Y. D. Chen, “Electrical impedance determination of cancer cell viability in a 3-dimensional cell culture microfluidic chip,” International Journal of Electrochemical Science, vol. 7, pp. 12817 – 12828, 2012
    [15] C. H. Chuang, C. H. Wei, Y. M. Hsu, and J. T. Lu, “Multilayer electrodes dep chip for single-cell level impedance measurement,” NEMS 2nd IEEE International Conference, pp. 821-825, 2007
    [16] S. Zheng, H. Lin, J. Q. Liu, M. Balic, R. Datar, R. J. Cote, and Y. C. Tai, “Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells,” Journal of Chromatography A, vol. 1162, pp. 154–161, 2007
    [17] M. Hosokawa, T. Yoshikawa, R. Negishi, T. Yoshino, Y. Koh, H. Kenmotsu, T. Naito, T. Takahashi, N. Yamamoto, Y. Kikuhara, H. Kanbara, T. Tanaka, K. Yamaguchi, and T. Matsunaga, “Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer,” Analytical Chemistry, vol. 85, pp. 5692−5698, 2013
    [18] M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of cir-culating tumor cells,” Analytical Chemistry, vol. 82, pp. 6629–6635, 2010
    [19] S. P. Lacour, S. Benmerah, E. Tarte, J. FitzGerald, J. Serra, S. McMahon, J. Fawcett, O. Graudejus, Z. Yu, and B. Morrison III, “Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces,” Medical & Biological Engineering & Computing, vol. 48, pp. 945–954, 2010
    [20] K. P. Hoffmann, W. Poppendieck, S. Tätzner, J. DiGiovanna, M. I. Kos, N. Guinand, J. P. Guyot, and S. Micera, “3D hybrid electrode structure as implantable interface for a vestibular neural prosthesis in humans,” 33rd Annual International Conference of the IEEE EMBS, pp. 1073 – 1076, 2011
    [21] D. H. Baek, C. H. Han, H. C. Jung, S. M. Kim, C. H. Im, H. J. Oh, J. J. Pak, and S. H. Lee, “Soldering-based easy packaging of thin polyimide multichannel electrodes for neuro-signal recording,” Journal of Micromechanics and Microengineering, vol. 22, pp. 115017, 2012
    [22] B. Haba and Y. Morishige, “Novel drilling technique in polyimide using visible laser,” Applied Physics Letters, vol. 66, pp. 3591-3593, 1995
    [23] K. Coupland, P. R. Herman, and B. Gu, “Laser cleaning of ablation debris from CO2 -laser-etched vias in polyimide,” Applied Surface Science, vol. 127–129, pp. 731–737, 1998
    [24] MEMS & Nanotechnology Exchange – About MEMS, https://www.mems-exchange.org/
    [25] Lab-on-a-Chip, http://www.epa.gov/
    [26] J. Chen, J. Li, and Y. Sun, “Microfluidic approaches for cancer cell detection, charac-terization, and separation,” Lab Chip, vol. 12, pp. 1753–1767, 2012
    [27] Y. Zheng, J. Nguyen, Y. Wei, and Y. Sun, “Recent advances in micro-fluidic tech-niques for single-cell biophysical characterization,” Lab Chip, vol. 13, pp. 2464–2483, 2013
    [28] S. Lindstrom and H. Andersson-Svahn, “Overview of single-cell analyses: mi-cro-devices and applications,” Lab Chip, vol. 10, pp. 3363–3372, 2010
    [29] Y. Yamaguchi, T. Arakawa, N. Takeda, Y. Edagawa, and S. Shoji, “Development of a poly-dimethylsiloxane microfluidic device for single cell isolation and incubation,” Sensors and Actuators B, vol. 136, pp. 555–561, 2009
    [30] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, “Microfluidic control of cell pairing and fusion,” Nature Methods, vol. 6, No. 2, pp. 147-152, 2009
    [31] S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the iso-lation and enumeration of cancer cells from blood,” Biomedical Microdevices, vol. 11, pp. 883–892, 2009
    [32] S. Kobel, A. Valero, J. Latt, P. Renaud, and M. Lutolf, “Optimization of microfluidic single cell trapping for long-term on-chip culture,” Lab Chip, vol. 10, pp. 857–863, 2010
    [33] R. McGuinness, “Impedance-based cellular assay technologies: recent advances, future promise,” Current Opinion in Pharmacology, vol. 7, pp. 535–540, 2007
    [34] LIGA微機械加工技術 (LIGA micromachining), http://www.hightech.url.tw/
    [35] AZ P4000 Thick Film Photoresist Datasheet
    [36] Lithography Trouble Shooter – 2014, http://www.microchemicals.eu/
    [37] 雷射的種類, http://www.ieo.nctu.edu.tw/
    [38] Timothy E Antesberger, “Laser drilling for electrical interconnection in advanced flexible electronics applications”
    [39] 黃淑瑜, “雷射微加工技術,” Photonics Industry & Technology Development Associ-ation, pp. 24, 1999
    [40] 黃冠仁, “CO2 雷射加工高分子及玻璃材料的缺陷改善探討,” 國立成功大學機械工程學系碩士論文, 民國95年
    [41] Z. L. Li, T. T. Lin, and P. M. Moran, “Thick polymer cover layers for laser microm-achining of fine holes,” Applied Physics A, vol. 81, pp. 753–758, 2005
    [42] S. Lee, “CO2 processing at 9 microns,” Industrial Laser Solution, vol. 17, pp. 1–4, 2002
    [43] M. Schlesinger and M. Paunovic, Modern Electroplating (5th edition), John Wiley & Sons, Inc., New Jersey, 2010
    [44] 田福助, 電化學: 理論與應用, 高立出版, 新科技總經銷, 臺北巿, 1987
    [45] D. Zhu and Y.B. Zeng, “Micro electroforming of high-aspect-ratio metallic micro-structures by using a movable mask,” CIRP Annals - Manufacturing Technology, vol. 57, pp. 227–230, 2008
    [46] S. M. Lee, D. J. Oh, I. D. Jung, P. G. Jung, K. H. Chung, W. I. Jang, and J. S. Ko, “Evaluation of the waterproof ability of a hydrophobic nickel micromesh with ar-ray-type microholes,” Journal of Micromechanics and Microengineering, vol. 19, pp. 125024, 2009
    [47] J. K. Luo, D. P. Chu, A. J. Flewitt, S. M. Spearing, N. A. Fleck, and W. I. Milne, “Uniformity control of Ni thin-film microstructures deposited by through-mask plat-ing,” Journal of The Electrochemical Society, vol. 152 (1), pp. C36-C41, 2005
    [48] H. Yang and S. W. Kang, “Improvement of thickness uniformity in nickel electro-forming for the LIGA process,” International Journal of Machine Tools & Manufac-ture, vol. 40, pp. 1065–1072, 2000
    [49] J. D. Li, P. Zhang, Y. H. Wu, Y. S. Liu, and M. Xuan, “Uniformity study of nickel thin-film microstructure deposited by electroplating,” Microsystem Technologies, vol. 15, pp. 505–510, 2009
    [50] I. Kim and P. F. Mentone, “Electroformed nickel stamper for light guide panel in LCD back light unit,” Electrochimica Acta, vol. 52, pp. 1805–1809, 2006
    [51] M. Nikolova and J. Watkowski, “Innovative high throw Cu electroplating process for metallization of PCB,” Pan Pacific Symposium Conference, 2011
    [52] Y. H. Guo, G. Liu, and Y. C. Tian, “Investigation on overplating high-aspect-ratio mi-crostructure,” Proceedings of SPIE, vol. 6109, pp. 61090M-1-8, 2006
    [53] 黃憲中, “磷含量對鎳磷電鍍合金顯微組織變化以及硬化機構之影響,” 國立成功大學材料科學及工程學系碩士論文, 民國97年
    [54] 化學鍍金350, GianTechs
    [55] CO2雷射雕刻系統, Center for Micro/Nano Science and Technology NCKU, http://cmnst.ncku.edu.tw/bin/home.php
    [56] KEYENCE Confocal Microscope, University of Twente, http://www.utwente.nl/en/
    [57] COMSOL MULTIPHYSICS V4.2, http://www.comsol.com/
    [58] S. Chisca, I. Sava, V. E. Musteata, and M. Bruma, “Dielectric and conduction proper-ties of polyimide films,” Semiconductor Conference (CAS), vol. 2, pp. 253-256, 2011
    [59] G. B. Collins, “Laser processing of polyimide on copper,” Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University for the degree of Master of Science In Electrical Engineering, 2011
    [60] 李映瑩, 蔡宗霖, 謝達斌, “金奈米粒子於生物醫學上的應用,” 化學, 第六十八卷, 第一期, 第11-20頁, 2010
    [61] Two-Wire vs. Four-Wire Resistance Measurements: Which Configuration Makes Sense for Your Application, http://www.techni-tool.com/

    下載圖示 校內:2019-08-26公開
    校外:2019-08-26公開
    QR CODE