簡易檢索 / 詳目顯示

研究生: 柳惟中
Liu, Wei-Chung
論文名稱: 基於數位訊號處理器控制的固態斷路器之研製
Study and Implementation of Solid-State Breaker Based on DSP Controller
指導教授: 陳建富
Chen, Jiann-Fuh
共同指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 58
中文關鍵詞: 智慧電網固態斷路器故障電流上升量偵測
外文關鍵詞: smart grid, solid-state breaker, fault current rising rate detection
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現在智慧電網的發展已經成為一種國際趨勢。由於傳統的機械式斷路器切斷電流時間過長,直流微電網上的元件將會在短路故障發生時承受過大的電流而毀損。
    本論文中提出一個輸入電壓為500V的固態斷路器的原型設計,利用控制開關數量來完成不同額定電流的固態斷路器,額定的電流分別為50A、100A、150A以及200A。並採用數位信號處理器控制固態斷路器,達成偵測故障電流並進行限流保護以及偵測故障電流上升率,從而完成可在5 μs~ 10μs範圍內的延遲時間保護。

    The development of smart grid has become an international trend. The trip time for the conventional mechanical circuit breaker is too long, and the components on the DC micro grid will withstand excessive current and be damaged when short-circuit fault occurs.
    In this thesis, a prototype of a solid-state circuit breaker with an input voltage of 500V is proposed. The number of switches is used to achieve solid-state breaker with different rated currents, including 50A, 100A, 150A and 200A. A digital signal processor is used to control the solid-state circuit breaker to achieve fault current detection and current limiting protection as well as fault current rising rate detection to complete different delay time protection in the range of 5 μs~ 10μs.

    摘要 I Abstract II Acknowledgement III Contents IV List of Tables V List of Figures VII Chapter 1. Introduction 1 1.1 Background 1 1.2 Organization of Thesis 3 Chapter 2. An Overview of DC Circuit Breaker 4 2.1 Types of DC Circuit Breaker 4 2.2 Prototype of Solid-State Breaker 9 Chapter 3. Analysis of Proposed Solid-State Breaker 11 3.1 Operational Principle 12 3.2 Calculation of Solid-State Breaker 19 3.3 Design of Snubber Circuit 22 Chapter 4. Analysis and Design of Proposed Protection Circuit 24 4.1 Characteristics of IGBT 24 4.2 Digital Signal Processor of the Proposed Circuit 28 4.3 Design of the Proposed Protection Circuit 31 Chapter 5. Experimental Results 40 Chapter 6. Conclusions and Future Studies 54 6.1 Conclusions 54 6.2 Future Studies 54 References 56

    [1] F. Li; W. Qiao; H. Sun; H. Wan; J. Wang; Y. Xia; Z. Xu ; P. Zhang, "Smart Transmission Grid: Vision and Framework," IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 168-177, Sept. 2010.
    [2] E. Rodriguez-Diaz, F. Chen, J. C. Vasquez, J. M. Guerrero, R. Burgos, and D. Boroyevich, "Voltage-Level Selection of Future Two-Level LVdc Distribution Grids: A Compromise Between Grid Compatibiliy, Safety, and Efficiency," in IEEE Electrification Magazine, vol. 4, no. 2, pp. 20-28, June 2016.
    [3] B. K. Bose, “Power Electronics, Smart Grid, and Renewable Energy Systems,” Proc. IEEE, vol. 105, no. 11, pp. 2011–2018, Nov. 2017.
    [4] B. G. Rawn, P. W. Lehn, and M. Maggiore, “Control Methodology to Mitigate the Grid Impact of Wind Turbines,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 431–438, Jun. 2007.
    [5] H. Farhangi, “The Path of the Smart Grid,” IEEE Power Energy Mag., vol. 8, no. 1, pp. 18–28, Jan./Feb. 2010.
    [6] S. M. Amin and B. F. Wollenberg, “Toward a Smart Grid: Power Delivery for the 21st Century,” IEEE Power Energy Mag., vol. 3, no. 5, pp. 34–41, Sep./Oct. 2005.
    [7] S. Hsieh and C. Lai, "A Novel Scheme for Improving the Reliability in Smart Grid Neighborhood Area Networks," IEEE Access, vol. 7, pp. 129942-129954, 2019.
    [8] M. H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-Kantarci,and M. Radenkovic, "Integrating Renewable Energy Resources Into the Smart Grid: Recent Developments in Information and Communication Technologies," in IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 2814-2825, July 2018.
    [9] X. Fang, S. Misra, G. Xue, and D. Yang, "Smart Grid — The New and Improved Power Grid: A Survey," IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 944-980, Fourth Quarter 2012.
    [10] D. Kumar, F. Zare, and A. Ghosh, "DC Microgrid Technology: System Architectures, AC Grid Interfaces, Grounding Schemes, Power Quality, Communication Networks, Applications, and Standardizations Aspects," IEEE Access, vol. 5, pp. 12230-12256, 2017.
    [11] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, "A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and Challenges," IEEE Communi-cations Surveys & Tutorials, vol. 15, no. 1, pp. 5-20, First Quarter 2013.
    [12] M. Kesler, M. C. Kisacikoglu, and L. M. Tolbert, “Vehicle-to-Grid Reactive Power Operation Using Plug-in Electric Vehicle Bidirectional Offboard Charger,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6778–6784, Dec. 2014.
    [13] A. K. Rathore, D. R. Patil, and D. Srinivasan, “Non-Isolated Bidirectional Soft-Switching Current-Fed LCL Resonant DC/DC Converter to Interface Energy Storage in DC Microgrid,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1711–1722, March-Apr. 2016.
    [14] X. Pei, O. Cwikowski, D. S. Vilchis-Rodriguez, M. Barnes, A. C. Smith, and R. Shuttleworth, "A Review of Technologies for MVDC Circuit Breakers," IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society.
    [15] A. Mokhberdoran, A. Carvalho, H. Leite, and N. Silva, "A Review on HVDC Circuit Breakers," 3rd Renewable Power Generation Conference (RPG 2014), Naples, 2014.
    [16] Wikipedia, “Circuit Breaker,” July, 2020. [Online]. Available: https://en.wikipedia.org/wiki/Circuit_breaker?fbclid=IwAR3q0A8swi_wXTOlGQ6ZR2dJ3HKle_QVaEDAXORwspX2qdfAd6XhtovJ1zU#%22Smart%22_circuit_breakers
    [17] L. A. Capilla, E. J. J. Rodríguez, F. J. León, C. Gordillo-Tapia, and J.J. Martínez, "DC Ultra-Fast Solid State Circuit Breaker Using the Voltage Inductor to Activate Short Circuit Protection"2017 IEEE Second International Conference on DC Microgrids (ICDCM)
    [18] M. T. Tsai, C. L. Chu, B. W. Huang, C. H. Lien, and K. H. Chao, "Design a DC Solid State Circuit Breaker for Smart Grid Application“ 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
    [19] X. Song , C. Peng, and A. Q. Huang, “A Medium-Voltage Hybrid DC Circuit Breaker, Part I: Solid-State Main Breaker Based on 15 kV SiC Emitter Turn-OFF Thyristor,” IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, Volume: 5, Issue: 1.
    [20] P. Cairoli, L. Qi, C. Tschida, V.R. R. Ramanan, L. Raciti, and A. Antoniazzi, "High Current Solid State Circuit Breaker for DC Shipboard Power Systems" 2019 IEEE Electric Ship Technologies Symposium (ESTS)
    [21] A. Greenwood, "Vacuum Switchgear," Institution of Electrical Engineering and technology, Stevenage, 1994.
    [22] C. Gu, "Key Technologies of Multi-Port Power Conversion Systems for the More Electric Aircraft" PCIM Asia 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
    [23] W. Xiang, Y. Hua, J. Wen, M. Yao, and N. Li, "Research on Fast Solid State DC Breaker Based on a Natural Current Zero-Crossing Point," Journal of Modern Power Systems and Clean Energy, vol. 2, no. 1, pp. 30-38, March 2014.
    [24] B. Li, J. He, Y. Li, and R. Li, "A Novel Solid-State Circuit Breaker With Self-Adapt Fault Current Limiting Capability for LVDC Distribution Network," IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3516-3529, April 2019.
    [25] L. Chan, “DC Circuit Breaker Theory and Uses You Never Know,” March, 2015. [Online]. Available: https://www.linkedin.com/pulse/dc-circuit-breaker-theory-uses-you-never-know-lily-chan?fbclid=IwAR1WD2QmuA2Mo22kh00jbfStC6 ERCYM59SJQIUX7yZouWmv8fu6jG6wfxhs
    [26] S. Kamtip and K. Bhumkittipich, "Comparison Between Mechanical Circuit Breaker and Solid State Circuit Breaker Under Abnormal Conditions for Low Voltage Systems,"2015 18th International Conference on Electrical Machines and Systems (ICEMS).
    [27] K. Tahata, S. El Oukaili, K. Kamei, D. Yoshida, Y. Kono, R. Yamamoto, and H. Ito, "HVDC Circuit Breakers for HVDC Grid Applications," 11th IET International Conference on AC and DC Power Transmission, Birmingham, 2015, pp. 1-9.
    [28] C. M. Franck, "HVDC Circuit Breakers: A Review Identifying Future Research Needs," in IEEE Transactions on Power Delivery, vol. 26, no. 2, pp. 998-1007, April 2011.
    [29] C. Meyer, M. Kowal, and R. W. De Doncker, "Circuit Breaker Concepts for Future High-Power DC-Applications," Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005., Kowloon, Hong Kong, 2005, pp. 860-866 Vol. 2.
    [30] D. W. Lai, “Analysis and Implementation of Electric Circuit Breaker,” M. S. thesis, National Cheng Kung University, 2019.
    [31] H. Y. Huang, “Study and Application of IGBT Switch Circuit with Current-limit Protection,” M. S. thesis, National Cheng Kung University, 2016.
    [32] Infineon, “High Speed Switching Series Third Generation IGBT,” IKQ75N120CH3 datasheet, Jun. 2017.
    [33] Texas Instruments, “TMS320F2803X Piccolo Technical Reference Manual,”, Dec. 2018.

    下載圖示 校內:2025-07-28公開
    校外:2025-07-28公開
    QR CODE