簡易檢索 / 詳目顯示

研究生: 李成斌
Li, Cheng-Bin
論文名稱: 具新型三相感應耦合結構之電動車用非接觸式充電槳系統
Contactless Charging Paddle System for Electric Vehicles with Three-Phase Inductive Coupled Structure
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 85
中文關鍵詞: 電動車三相感應耦合結構非接觸式充電槳
外文關鍵詞: Electric Vehicles, Three-Phase Inductive Coupled Structure, Contactless Charging Paddle
相關次數: 點閱:108下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製具新型三相感應耦合結構之電動車用感應充電槳,與傳統單相耦合結構者之不同處,在於以三相激勵電源驅動三相感應耦合結構,各相鐵芯柱彼此之間共享磁通路徑,實現以較小鐵芯體積下獲得較高功率密度與感應電能傳輸能力之目的。文中使用等效磁路模型與有限元素模擬軟體Maxwell分析,針對不同外形輪廓之三相鐵芯耦合結構進行磁場模擬與磁路模型建立,進而提出整體鐵芯利用率高,且適於三相感應充電槳系統之新型三相鐵芯耦合結構。次級側使用降壓充電電路搭配單晶片PIC18F4520控制實現對磷酸鋰鐵電池進行定電流-定電壓充電。最後以實驗量測,結構間隙在0.4mm下,最大感應電能傳輸效率為88%,最大接收功率為946W。

    The purpose of this thesis is to design and implement an efficiency three-phase contactless inductive charging paddle. Several types of core shape are investigated and their magnetic circuits are simulated and analyzed. Therefore, a new-type three-phase core structure is proposed. In the secondary side the buck-type charging circuit that refer to CC-CV charging algorithm is implemented by PIC18F4520 microcontroller for LiFePO4 battery. Finally, the experimental verification, when gap of inductive coupled structure is 0.4mm, the highest transmission effi¬ciency is 88%, the maximum received power is 946W.

    目錄 頁數 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 研究目的與背景 1 1-2 非接觸式感應電能傳輸技術之應用 4 1-3 研究方法 5 1-4 論文大綱 6 第二章 非接觸感應耦合原理 7 2-1 前言 7 2-2 感應線圈基本原理 7 2-3 磁性材料 9 2-4 變壓器等效模型 11 2-4-1 鬆耦合變壓器 11 2-4-2 互感與耦合係數量測 13 2-5 SAE J-1773規範之感應耦合結構磁場模擬 13 2-6 三相感應電能傳輸 15 2-6-1 三相感應電能傳輸原理與應用 15 2-6-2 三相感應充電槳與充電插槽 16 2-7 電池基本特性與充電策略 17 2-7-1 二次電池種類 18 2-7-2 電池充電策略 21 第三章 三相感應充電槳分析與研製 24 3-1 前言 24 3-2 三相感應耦合結構分析 24 3-2-1 E型三相感應耦合結構之磁路分析 26 3-2-2 Delta型三相感應耦合結構之磁路分析 29 3-2-3 Y型三相感應耦合結構之磁路分析 33 3-2-4 新型三相感應耦合結構之磁路分析 37 3-3 三相感應耦合結構之磁通密度模擬 40 3-4 三相感應耦合結構評比 43 3-5 三相感應耦合結構繞製與量測 44 3-5-1 三相感應耦合結構實體圖與繞製規格 44 3-5-2 三相感應耦合結構之參數量測 46 3-6 諧振電路設計 48 3-6-1 諧振電路之分析 48 3-6-2 感應結構之諧振電路分析 50 3-6-3 三相諧振電路 54 第四章 三相感應充電槳系統 56 4-1 前言 56 4-2 三相感應充電槳系統架構 56 4-3 充電槳側電路架構 57 4-3-1 三相諧振變流器 57 4-3-2 電壓回授感測電路 58 4-3-3 PIC單晶片控制電路 59 4-3-4 諧振頻率追蹤機制 61 4-3-5 三相方波產生電路 62 4-4 充電插槽側電路架構 64 4-4-1 三相整流濾波電路 64 4-4-2 電池充電電路 64 第五章 模擬與實驗結果 69 5-1 前言 69 5-2 Simplis電路模擬 69 5-3 三相感應充電槳系統規格 71 5-4 實驗結果與量測 72 第六章 結論與未來研究方向 79 6-1 結論 79 6-2 未來研究方向 80 參考文獻 81

    參考文獻
    [1] D. S. Gautam, F. Musavi, W. Eberle, and W. G. Dunford, “A zero-voltage switching full-bridge DC-DC converter with capacitive output filter for plug-in hybrid electric vehicle battery charging,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5728-5735, Dec. 2013.
    [2] B. Gu, J. S. Lai, N. Kees, and C. Zheng, “Hybrid-switching full-bridge DC-DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1132-1144, Mar. 2013.
    [3] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama, “Autonomous distributed V2G satisfying scheduled charging,” IEEE Trans. Smart Grid., vol. 3, no. 1, pp. 559-564, Mar. 2012.
    [4] J. J. Escudero-Garzas, A. Garcia-Armada, and G. Seco-Granados, “Fair design of plug-in electric vehicles aggregator for V2G regulation,” IEEE Trans. Veh.Technol., vol. 61, no. 8, pp. 3406-3419, Oct. 2012.
    [5] http://www.mlive.com/auto/index.ssf/2012/06/is_wireless_charging_a_game_ch.html.
    [6] http://www.highmotor.com/tag/rav4-ev.
    [7] “SAE electric vehicle inductive charge coupling recommended practice,” SAE J-1773, Society of Automotive Engineers, Draft Document, 1995-01.
    [8] J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Trans. Ind. Appl., vol. 35, pp. 884-895, 1999.
    [9] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, vo1. 2, pp. 841-847.
    [10] Y. Koike, M. Kaneko, T. Hyogo, and H. Shojima, “Electromagnetic induction type charging device,” U.S. Patent 6,239,577, 2001.
    [11] G. R. Woody, H. J. Tanzer, and J. T. Hall, “Fixed core inductive charger,” U.S. Patent 5,434,493, 1995.
    [12] K. Watanabe, H. Kuki, D. Arisaka, and T. Shimada, “Charging connector for electric vehicle,” U.S. Patent 5,909,100, 1999.
    [13] K. Watanabe, H. Kuki, S. Arisaka, and T. Shmiada, “Magnetic coupling device for charging an electric vehicle,” U.S. Patent 5,917,307, 1999.
    [14] Y. Koike, K. D. Conroy, and P. T. Nguyen, “Charger coupling,” U.S. Patent 6,373,221, 2002.
    [15] 陳建任,具多鐵芯感應結構非接觸式油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
    [16] 麥綺明,非接觸式感應充電技術應用於油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
    [17] C. H. Hu, C. M. Chen, Y. S. Shiao, T. J. Chan, and T. R. Chen, “Development of a universal contactless charger for handheld devices,” in Proc. IEEE ISIE, 2008, pp. 99-104.
    [18] K. C. Wang, C. W. Hsu, T. J. Chan, T. S. Chien, and T. R. Chen, “Study of applying contactless power transmission system to battery charge,” in Proc. IEEE PEDS, 2009, pp. 257-262.
    [19] T. Yazaki, I. Morita, and H. Tanaka, “Demonstration of optical wireless USB 2.0 system with wireless power transfer,” in Proc. IEEE ICCE, 2011, pp. 11-12.
    [20] P. Sergeant and A. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no. 1, pp. 1-7, 2008.
    [21] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental result on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
    [22] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA, 2007, pp. 68-73.
    [23] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
    [24] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
    [25] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. ICPST, 2000, vol. 1, pp. 79-84.
    [26] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicles,” in Proc. IPEC, 2010, pp. 807-813.
    [27] T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, “An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy,” in Proc. IEEE IEMBS, 2010, pp. 6531-6534.
    [28] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE NEMS, 2010, pp. 604-607.
    [29] C. L. W. Sonntag, E. A. Lomonova, J. L. Duarte, and A. J. A. Vandenput, “Specialized receiver for three-phase contactless energy transfer desktop applications,” in Proc. EPE, 2007, pp. 1-11.
    [30] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Model for three-phase contactless power transfer system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2676-2687, Sep. 2011.
    [31] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of Characteristics on Planar Contactless Power Transfer Systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2676-2687, Jun. 2012.
    [32] G. A. Covic, J. T. Boys, M. L. G. Kissin, and H. G. Lu, “A three-phase inductive power transfer system for roadway-powered vehicles,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3370-3378, Dec. 2007.
    [33] M. Budhia, G. A. Covic, and J. T. Boys, “Magnetic design of a three-phase inductive power transfer system for roadway powered electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-6.
    [34] 張繼安,電動車用非接觸式三相感應充電槳系統之研製,國立成功大學電機工程學系碩士論文,2012年。
    [35] 劉尚迪,具對位式三相感應耦合結構之電動車用非接觸式充電槳系統,國立成功大學電機工程學系碩士論文,2012年。
    [36] 梁適安,磁性元件分析與設計。
    [37] Array Power & Cleaning Energytech, Inc. (2011, Mar.). Introduction of lithium iron phosphate battery. China. [Online]. Available: http://www.appowertech.com/download.asp?page=2.
    [38] 王志方,磷酸鋰鐵電池之產業概況,2008年11月。
    [39] 許家興,電動車電池類型與電池基礎介紹,2009年10月。
    [40] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1238-1247, 2001.
    [41] T. H. Nishimura, T. Eguchi, K. Hirachi, Y. Maejima, K. Kuwana, and M. Saito, “A large air gap flat transformer for a transcutaneous energy transmission system,” in Proc. IEEE PESC, 1994, vol. 2, pp. 1323-1329.
    [42] J. Y. Lee, H. Y. Shen, and T. L. Wan, “Contactless inductive charging system with hysteresis loop control for small-sized household electrical appliances,” in Proc. IEEE APEC, 2012, U.S.A., pp. 2172-2178.
    [43] F. Zhuo, X. Shen, Y. Qiu, L. Wu, and Z. Wang, “Study of detachable transformer using FEM on contactless power transmission system,” in Proc. IEEE PESC, 2008, pp. 4333-4336.
    [44] W. Zhang, Q. Chen, C. K. Tse, X. Ruan, and S. C. Wong, “A novel transformer for contactless energy transmission systems,” in Proc. IEEE ECCE‚ 2009, pp. 3218-3324.
    [45] Y. Yugang, Y. Dong, and F. C. Lee, “A new coupled inductors design in 2-phase interleaving VRM,” in Proc. IEEE IPEMC‚ 2009, pp. 344-350.
    [46] PIC18F2420/2520/4420/4520 Data Sheet, Microchip Technology Inc., 2004.

    下載圖示 校內:2014-08-15公開
    校外:2015-08-15公開
    QR CODE