研究生: |
鍾代均 Zhong, Dai-Jun |
---|---|
論文名稱: |
溶膠凝膠法製備應用於電阻式記憶體之Mg2TiO4薄膜 Research of Sol-Gel Derived Mg2TiO4 Thin Films for RRAM Application |
指導教授: |
黃正亮
Huang, Cheng-Liang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 溶膠凝膠法 、Mg2TiO4薄膜 、電阻轉換特性 、電阻式記憶體 |
外文關鍵詞: | Sol-gel, Mg2TiO4, RRAM, thin films |
相關次數: | 點閱:57 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以溶膠凝膠法在ITO玻璃基板上塗佈Mg2TiO4薄膜。根據XRD顯示Mg2TiO4為非晶態 (Amorphous)。第一部分探討Mg2TiO4薄膜以Al/ Mg2TiO4/ ITO (MIM)結構下之不同退火溫度的電阻轉換特性。在未退火與退火200oC時觀察到單極性電阻轉換,未退火Al/Mg2TiO4 (30 nm)/ITO轉換次數約為30次且Ron/Roff達103,退火200oC Al/Mg2TiO4 (30 nm)/ITO轉換次數約為50次且Ron/Roff達105,電阻轉換特性隨著退火溫度升高而變好,且透由SIMS分析,了解到退火300oC無電阻轉換特性之原因可能來自於In離子的過渡擴散。第二部分則以不同厚度之Mg2TiO4薄膜 測量Al/Mg2TiO4/ITO (MIM)結構之電性,在一定厚度 (10/30 nm)下,才能夠觀察到單極性電阻轉換,未退火Al/Mg2TiO4 (10 nm)/ITO轉換次數約為25次且Ron/Roff 102,Al/Mg2TiO4 (10 nm)/ITO則無電阻轉換特性,藉由漏電流機制分析,高阻態由SCLC所主導,低阻態則是由歐姆傳導機制所主導。為了更了解內部電阻轉換的形式,以XPS表面分析,結果顯示轉換機制應是由氧空缺所控制。Mg2TiO4薄膜與上電極Al的接面處可能產生interfacial layer,推測其為操作電壓Vset上升的原因。
In this work, Mg2TiO4 thin films in metal-insulator-metal stacks was investigated. The Mg2TiO4 and top electrode was deposited on ITO by Spinning Coating and e-beam, respectively. Al/Mg2TiO4/ITO MIM thin films with unipolar resistive switching was successfully fabricated. Through the analysis of XPS; SIMS and fitting of conduction mechanism, further understanding on the resistivity of our device can be studied. Bu assuming that the conductive filaments can be mostly controlled by the oxygen vacancies. The effects of the thickness and annealing temperature of Mg2TiO4 will be discussed.
1. M. Lanza, "A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope", Materials, vol. 7, no. 3, pp. 2155-2182, 2014.
2. K. Kim, D. Jeong and C. Hwang, "Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook", Nanotechnology, vol. 22, no. 25, p. 254002, 2011.
3. L. Zhu, J. Zhou, Z. Guo and Z. Sun, "An overview of materials issues in resistive random access memory", Journal of Materiomics, vol. 1, no. 4, pp. 285-295, 2015.
4. W. A. Deer, R. A. Howie and J. Zussman, “An introduction to the rock-forming minerals”, 2nd ed. (1992)
5. R. Bhuyan, T. Kumar, A. Perumal, P. Saravanan and D. Pamu, "Effect of annealing and atmosphere on the structure and optical properties of Mg2TiO4thin films obtained by the radio frequency magnetron sputtering method", Journal of Experimental Nanoscience, vol. 8, no. 3, pp. 371-381, 2013.
6. C. Huang and C. Ho, "Microwave Dielectric Properties of (Mg1−xNix)2TiO4 (x=0.02-0.1) Ceramics", International Journal of Applied Ceramic Technology, vol. 7, pp. E163-E169, 2010.
7. G. Eriksson, P. Wu, M. Blander and A. Pelton, "Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the MnO–SiO2and CaO–SiO2Systems", Canadian Metallurgical Quarterly, vol. 33, no. 1, pp. 13-21, 1994.
8. D. Jeong, R. Thomas, R. Katiyar, J. Scott, H. Kohlstedt, A. Petraru and C. Hwang, "Emerging memories: resistive switching mechanisms and current status", Reports on Progress in Physics, vol. 75, no. 7, p. 076502, 2012.
9. J. Meena, S. Sze, U. Chand and T. Tseng, "Overview of emerging nonvolatile memory technologies", Nanoscale Research Letters, vol. 9, no. 1, p. 526, 2014.
10. H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg, B. Rajendran, M. Asheghi and K. Goodson, "Phase Change Memory", Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.
11. D. Wouters, R. Waser and M. Wuttig, "Phase-Change and Redox-Based Resistive Switching Memories", Proceedings of the IEEE, vol. 103, no. 8, pp. 1274-1288, 2015.
12. F. Pan, S. Gao, C. Chen, C. Song and F. Zeng, "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance", Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
13. D. Ielmini, "Resistive switching memories based on metal oxides: mechanisms, reliability and scaling", Semiconductor Science and Technology, vol. 31, no. 6, p. 063002, 2016.
14. A. Sawa, "Resistive switching in transition metal oxides", Materials Today, vol. 11, no. 6, pp. 28-36, 2008.
15. Y. Huang, Z. Shen, Y. Wu, M. Xie, Y. Hu, S. Zhang, X. Shi and H. Zeng, "CuO/ZnO memristors via oxygen or metal migration controlled by electrodes", AIP Advances, vol. 6, no. 2, p. 025018, 2016.
16. E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey", Electronics, vol. 4, no. 3, pp. 586-613, 2015.
17. F. Chiu, "A Review on Conduction Mechanisms in Dielectric Films", Advances in Materials Science and Engineering, vol. 2014, pp. 1-18, 2014.
18. X. Wu, H. Xu, Y. Wang, A. Rogach, Y. Shen and N. Zhao, "General observation of the memory effect in metal-insulator-ITO structures due to indium diffusion", Semiconductor Science and Technology, vol. 30, no. 7, p. 074002, 2015.
19. D. Gallardo, C. Bertoni, S. Dunn, N. Gaponik and A. Eychmüller, "Cathodic and Anodic Material Diffusion in Polymer/Semiconductor-Nanocrystal Composite Devices", Advanced Materials, vol. 19, no. 20, pp. 3364-3367, 2007.
20. H. Lv, M. Wang, H. Wan, Y. Song, W. Luo, P. Zhou, T. Tang, Y. Lin, R. Huang, S. Song, J. Wu, H. Wu and M. Chi, "Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode", Applied Physics Letters, vol. 94, no. 21, p. 213502, 2009.
21. H. Zhao, H. Tu, F. Wei, X. Zhang, Y. Xiong and J. Du, "The enhancement of unipolar resistive switching behavior via an amorphous TiOx layer formation in Dy2O3-based forming-free RRAM", Solid-State Electronics, vol. 89, pp. 12-16, 2013.
22. Zhang Y, Wang H, Xu J, Yang L, Qiu W, Li Z (2014) Effect of ZnMn2O4 thickness on its resistive switching characteristics. Indian J Eng Mater Sci 21:563–566.
23. M. Wang, H. Lv, Q. Liu, Y. Li, H. Xie, S. Long, K. Zhang, X. Liu, H. Sun, X. Yang and M. Liu, "Study of One Dimension Thickness Scaling on Cu/HfOx/Pt Based RRAM Device Performance", 2012 4th IEEE International Memory Workshop, 2012.
24. Y. Chang, K. Lee, C. Lee, L. Wang and Y. Wang, "Bipolar Resistive Switching Behavior in Sol-Gel MgTiNiOxMemory Device", IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 321-327, 2016.
25. J. Zhu and C. Park, "Magnetic tunnel junctions", Materials Today, vol. 9, no. 11, pp. 36-45, 2006.
26. Yang Y, Shi Y, Liu J, Guo T-F. The control of morphology and the morphological dependence of device electrical and optical properties in polymer electronics. In: Hotta S, editor. Electronic and optical properties of conjugated molecular systems in condensed phases. Kerala: Research Signpost; 2003. p. 307–54.