簡易檢索 / 詳目顯示

研究生: 蕭育甫
Hsiao, Yu-Fu
論文名稱: 一個快速且有效來決定電源開關繞拓樸結構的方法
An Effective and Efficient Method for Determining Routing Topology of Power Switches
指導教授: 林家民
Lin, Jai-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 44
中文關鍵詞: 電源關斷結構電源開關瞬間輸入浪湧電流開機時間電源開關開啟時間
外文關鍵詞: power gating, power switch, rush current, wake up time, sequence time
相關次數: 點閱:120下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程不斷的進步,漏電流功率已成為功率消耗的主因之一,為了解決這個問題,電源關斷(power gating)結構已被廣泛使用在當今的超大型積體電路(VLSI)中,在此結構的設計議題中,以瞬間輸入浪湧電流(Rush current),開機時間(wake up time),電源開關開啟時間(sequence time)為最重要的議題。因此在此篇論文中,我們提出一個包含菊花鏈(daisy chain)以及分散式魚骨(foshbone)結構的混和式電源開關繞線結構,先利用菊花鏈結構對整體電源網路作緩慢的充電,利用此結構的特性降低瞬間輸入浪湧電流,且利用本論文所提出的充放電模型去估量所需的最小菊花鍊深度,當電源網路已充到一定準位後,再利用魚骨結構做快速的開啟,因電源網路已充到一定準位,此時利用魚骨結構開啟不會引起大量的瞬間輸入浪湧電流,且可讓整體電源開關開啟時間大量降低。我們的結構已實現在奇景公司(Himax Technologies Inc.)所提供的設計上,根據PrimeRail的測量,我們的結構的確不僅可以降低瞬間輸入浪湧電流,且可以大量減少電源開關開啟時間。

    As technology advances, leakage power increases dramatically in modern VLSI designs. To reduce leakage power, power-gating technology has been widely applied to circuit designs. Rush current and sequence time of the circuits are determined by the turn-on speed of power switches. To consider this problem, this paper proposes a hybrid routing structure, which includes a daisy chain and fishbone, to connect power switches. First, it builds a daisy chain to slowly charge voltage to a desired value in order to reduce rush current. According to the model and the equations proposed by this paper, proper number of power switches in a daisy chain which can satisfy the design constraint can be determined quickly. To further reduce sequence time, fishbone is applied to connect the remaining power switches. Experimental results show that our methodology builds designs which have smaller rush current than those using daisy chain only. More importantly, our designs still have small sequence time in real designs provided by Himax Technologies Inc..

    目錄 摘 要 I ABSTRACT II 誌 謝 III 目錄 IV 圖目錄 VII 表格目錄 IX 第1章. 簡介 1 1.1. 電源關斷結構 2 1.1.1 分散插入型(fine-grain) 3 1.1.2 網路並聯型(course-grain) 3 1.2. 電源開關 4 1.2.1 高準位截止型(header type) 4 1.2.2 低準位截止型(footer type) 5 1.3. 電源關斷結構之運作模式 6 1.4. 標準繞線結構 7 1.5. 相關研究 9 1.6. 研究貢獻 10 第2章. 開啟暫態模式 11 2.1 瞬間輸入浪湧電流 11 2.1.1 漏電流 11 2.1.2 動態電流(dynamic current) 12 2.1.3 電容充電電流 14 2.2 考慮漏電流之電源開關充放電分析模型 14 2.2.1 電源開關之線性等效模型 16 2.2.2 充放電模型之簡化 17 2.2.3 單一電源開關對邏輯閘之充放電方程式 19 第3章. 考慮開啟暫態模式最佳化之電源開關繞線演算法 25 3.1 混和式繞線結構與實作原理 25 3.2 混和式繞線結構之演算法流程 26 3.2.1 最佳菊花鏈電源開關之選擇 27 3.2.2 菊花鏈電源開關結構對邏輯閘充電分析 28 3.2.3 菊花鏈結構之電源開關繞線演算法 32 3.2.4 分散式魚骨結構之電源開關繞線 35 第4章. 實驗結果 36 第5章. 結論 41 第6章. 參考文獻 42   圖目錄 圖 1. 分散插入型結構示意圖。 2 圖 2. 網路並聯型結構示意圖。 3 圖 3. 高準位截止型結構示意圖。 4 圖 4. 低準位截止型結構示意圖。 5 圖 5. 菊花鏈結構之設計範例。 7 圖 6. 高散出結構之設計範例。 8 圖 7. 魚骨結構之設計範例。 9 圖 8. 開啟暫態模式之短路電流示意圖。 13 圖 9. 單一顆電源開關對邏輯閘的充放電示意圖。 15 圖 10. (A)C1RC2模型。(B)修正型C1RC2模型(加入漏電流電阻RLEAK)。 15 圖 11. 單一顆電源開關對修正型C1RC2模型的充放電示意圖。 16 圖 12. 高準位截止型電源開關之VBIAS-IBIAS特徵曲線圖。 17 圖 13. 忽略電源網目下,單一顆電源開關(線性迴歸等效阻抗)對修正型C1RC2模型的充放電示意圖。 18 圖 14. (A)忽略電源網目以及邏輯閘導通電阻下,單一顆電源開關(線性迴歸等效阻抗)對修正型C1RC2模型的充放電示意圖。(B)圖(A)之簡化圖。 19 圖 15. 控制訊號C(T)之波形圖。 20 圖 16. 菊花鏈電源開關結構之簡化分析流程。 31 圖 17. IC COMPLIER所支援的8種繞線方向. (A) LOWER_LV, (B) LOWER_LH, (C) LOWER_RV, (D) LOWER_RH, (E) UPPER_LV, (F) UPPER_LH, (G) UPPER_RV, (H) UPPER_RH. 33 圖 18. 菊花鏈電源開關之繞線演算法。 34 圖 19. 實驗數據1之實體繞線結果。 39 圖 20. 實驗數據4之實體繞線結果。 40 表格目錄 表格 1. 設計資訊 38 表格 2. 實驗結果:瞬間輸入浪湧電流,開啟時間以及訊號傳輸時間(違反設計限制的部分以粗體字標示) 38

    [1] A. Davoodi and A. Srivastava. Wake-up protocols for controlling current surges in MTCMOS-based technology. ASP-DAC, 2005, pages 868–871.
    [2] A. Ramalingam, A. Devgan, and D. Z. Pan. Wake-up scheduling in MTCMOS circuits using successive relaxation to minimize ground bounce. J. Low Power Electron, vol. 3, no. 1, pages 28–35, Apr. 2007.
    [3] C. Hwang, C. Kang, and M. Pedram. Gate sizing and replication to minimize the effects of virtual ground parasitic resistances in MTCMOS designs. ISQED, 2006, pages 741–746.
    [4] H.Jiang and M. Marek-Sadowska. Power gating scheduling for power/ground noise reduction. DAC, 2008, pages 980–985.
    [5] Joseph N, Kozhaya, Lu’Ay A. Bakir. An electrically robust method for placing power gating switches in voltage islands. CICC, 2004, pages 321-324.
    [6] J. Kao, A. Chandrakasan, and D. Antoniadis. Transistor sizing issues and tool for multi-thresh old CMOS technology. DAC, 1997, pages 409–414.
    [7] J. Kao, S. Narendra, and A. Chandrakasan. MTCMOS hierarchical sizing based on mutual exclusive discharge patterns. DAC, 1998, pages 495–500.
    [8] Kimiyoshi Usami, Toshiaki Shirai1, Tasunori Hashida, Hiroki Masuda1,. Design and implementation of fine-grain power gating with ground bounce suppression. VLSI Design, 2009, pages 381-386.
    [9] Lee Kee Yong, Chee Kong Ung. Power density aware power gate placement optimization. ASQED, 2010, pages 38-42.
    [10] Leakage current in sub-micro meter CMOS gates,
    http://www.inf.ufrgs.br/logics/docman/book_emicro_butzen.pdf
    [11] M. Keating, D. Flynn, R. Aitken, A. Gibsons, and K. Shi. Low power methodology manual for system on chip design. New York: Springer, 2007.
    [12] Seungwhun Paik, Sangmin Kim, Youngsoo Shin. Wakeup synthesis and its buffered tree construction for power gating circuit designs. ISLPED, 2010, pages 413-418.
    [13] Shi-Hao Chen, Youn-Long Lin, Mango C.-T. Chao. Power-up sequence control for MTCMOS designs. IEEE Transactions on VLSI, vol. 21, no. 3, pages 413-423, 2013.
    [14] S. Kim, S. V. Kosonocky, and D. R. Knebel. Understanding and minimizing ground bounce during mode transition of power gating structures. ISLPED, 2003, pages 22–25.
    [15] T. M. Tseng, M. C.-T. Chao, C. P. Lu, and C. H. Lo. Power-switch routing for coarse-grain MTCMOS technologies. ICCAD, 2009, pages 39–46.
    [16] V Sreekumar, S Ravichandran. Impact of leakage and short circuit current in rush current analysis of power gated domains. SoutheastCon, 2010, pages 41-44.
    [17] Vishal Khandelwal, Ankur Srivastava. Leakage control through fine-grained placement and sizing of sleep transistors. ICCAD, 2004, pages 533-536.
    [18] Y. T. Chen, D. C. Juan, M. C. Lee, and S. C. Chang. An efficient wake-up schedule during power mode transition considering spurious glitches Phenomenon. ICCAD, 2007, pages 779–782.
    [19] Y. Lee, D. K. Jeong, and T. Kim. Simultaneous control of power/ground current, wakeup time and transistor overhead in power gated circuits. ICCAD, 2008, pages 169–172.
    [20] http://www.synopsys.com/home.aspx
    [21] Leakage Current in Sub-Micrometer CMOS Gates, http://www.inf.ufrgs.br/logics/docman/book_emicro_butzen.pdf

    下載圖示 校內:2018-08-06公開
    校外:2018-08-06公開
    QR CODE