簡易檢索 / 詳目顯示

研究生: 黃彥綸
Huang, Yan-Lun
論文名稱: 利用加速度計評估作息型態和社會授時因子對晝夜節律產生的影響
Estimating the Influence of Chronotype and Social Zeitgebers on Circadian Rhythms by Accelerometers
指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 79
中文關鍵詞: 晝夜節律作息型態社會授時因子加速度計
外文關鍵詞: circadian rhythm, chronotype, social zeitgeber, accelerometer
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在為基於日常生活活動產生之加速度訊號開發晝夜節律估測演算法,並利用此演算法的分析結果做為探討作息型態和社會授時因子對晝夜節律產生影響的依據。在晝夜節律的參數計算上,我們利用配戴於慣用手腕及腳踝之三軸加速度感測器收集使用者的日常活動訊號進行晝夜節律的分析,基於本論文發展的分析方法,可得到下列資訊:1)每日晝夜節律的資訊,以及2) 一星期內天與天間晝夜節律的規律性和平均週期。
    在晝夜節律估測演算法當中,量測之加速度訊號首先經過重力移除與特徵擷取等訊號前處理程序,接下來再進行後續的資料分析。在特徵擷取時,本論文以count來做為代表人類活動量的主要特徵;24小時之count值經過睡/醒週期分析及餘弦分析後可得到每日晝夜節律的資訊,7天之count值經過龐卡萊圖分析和自相關分析後可得到一星期內天與天間晝夜節律的規律性和平均週期。
    接下來,本論文將晝夜節律估測演算法所產生的參數應用於探討作息型態和社會授時因子對晝夜節律產生的影響。我們首先以日夜作息型態量表從一群大學生中挑選出作息型態屬於早晨型或夜晚型的人做為實驗受測者。受測者於實驗期間配戴加速度感測器記錄晝夜節律參數,並定時填寫主觀量表,以了解受測者的睡眠品質和日間嗜睡程度。根據加速度訊號所分析出的晝夜節律參數,我們可以發現不同作息型態受測者的晝夜節律確實存在差異,其差異為:1)早晨型睡眠中點出現的時間約比夜晚型早了2個小時、2)早晨型的晝夜節律比夜晚型規律,縱然早晨型和夜晚型於晝夜節律有所差異,但兩種類型於主觀量表所表現的睡眠品質和日間嗜睡程度並沒有差異。另一方面,我們透過比較早晨型或夜晚型於平日和假日間的晝夜節律差異,來探討社會授時因子對晝夜節律的影響。社會授時因子確實會對晝夜節律產生影響,但影響程度會依個體之作息型態不同,而有所不同。早晨型於平日和假日間之晝夜節律較無差異;夜晚型於平日和假日間的入睡時間無差異,但是平日的醒來時間比假日早了約一小時,因此壓縮到了夜晚型於平日的睡眠長度,但睡眠品質和日間嗜睡程度所受的影響有限。
    由上述結果我們可以得知,不同作息型態間的晝夜節律確實存在差異,睡眠中點出現的時間是最明顯的差異;此外,社會授時因子確實會對晝夜節律產生影響,但此影響會依作息型態的不同而有所不同,早晨型受到的影響較小,夜晚型受到的影響較大。

    This thesis aimed at developing a circadian rhythm estimation algorithm by daily activity accelerations. With the help of the indices derived from the proposed circadian rhythms estimation algorithm, we investigated the influence of chronotype and social zeitgebers on circadian rhythms. Based on the accelerations collected from domain wrist and ankle, the proposed circadian rhythm estimation algorithm generates circadian rhythm information including: 1) the circadian rhythms indices of each day and 2) regularity of circadian rhythms among days and the average period in a week.
    The proposed circadian rhythm estimation algorithm first removes gravitational component and filters noise, then extract the count value: a feature derived from activity acceleration signal. The count value of each day is used to generate the circadian rhythm information of each day by sleep/wake cycle analysis and cosinor analysis. The count value of a week (7 days) is analyzed via Poincaré plot analysis and autocorrelation analysis to represent the regularity of circadian rhythms among days and the average period in a week.
    Based on the indices obtained from circadian rhythms estimation algorithm, we further investigate the influence of chronotype and social zeitgebers on circadian rhythms. Both morning type and evening type subjects are included in our experiment to represent different chronotypes. Based on the indices of the proposed circadian rhythms estimation algorithm, we can conclude that there are some differences on circadian rhythms between various chronotype, the differences are: 1) morning types have earlier occurrence of sleep midpoint than evening types (approximate two hours) and 2) morning types’ circadian rhythms are more regular to that of evening types. Although there are some differences between morning type and evening type, these differences on circadian rhythm do not lead to the differences on their sleep quality and daytime sleepiness (measured by subjective questionnaires). In addition to investigate the differences between various chronotypes, we also compare the circadian rhythms indices between weekday and weekend to investigate the influence of social zeitgebers on circadian rhythms. Social zeitgebers also impact our circadian rhythms, but the influence of social zeitgebers has different impact to the subjects with various chronotype. In the subjects of morning type, there are no differences on the circadian rhythm between weekday and weekend. However, the subjects of evening type reveal the different circadian rhythm in the sleep-wake cycle between weekday and weekend. The sleep onset time of evening type subjects are similar between weekday and weekend, but the wake up time on the weekday are earlier than that of the weekend (approximate one hour).
    Based on the observed phenomenon, we can know that chronotype have indeed influence on circadian rhythms; the most significant characteristic is sleep midpoint. On the other hand, social zeitgebers also have impact on circadian rhythms of evening type subjects.

    中文摘要 i 英文摘要 iii 目 錄 v 表目錄 vii 圖目錄 viii 第1章 緒論 1-1 1.1 研究背景與動機 1-1 1.2 文獻探討 1-4 1.3 研究目的 1-7 1.4 論文架構 1-8 第2章 實驗架構與流程 2-1 2.1 加速度感測器之硬體設計 2-1 2.2 主觀感覺量表 2-2 2.2.1 日夜作息型態量表(Morningness-eveningness questionnaire, MEQ) 2-2 2.2.2 睡眠日誌(Sleep diary) 2-3 2.2.3 維辛式睡眠量表(Verran and Snyder-Halpern sleep scale, VSHSS) 2-3 2.2.4 史丹佛嗜睡量表(Stanford sleepiness scale, SSS) 2-4 2.2.5 艾普沃斯嗜睡量表(Epworth sleepiness scale, ESS) 2-4 2.3 實驗環境建置與資料收集 2-4 第3章 晝夜節律估測演算法 3-1 3.1 演算法架構 3-1 3.2 訊號前處理 3-3 3.3 晝夜節律估測演算法 3-4 3.3.1 睡/醒週期分析 3-4 3.3.2 餘弦分析(Cosinor analysis) 3-5 3.3.3 龐卡萊圖(Poincaré plot)分析 3-8 3.3.4 自相關(autocorrelation)分析 3-14 第4章 實驗結果 4-1 4.1 早晨型和夜晚型間晝夜節律的差異 4-2 4.2 社會授時因子對不同作息型態之晝夜節律產生的影響 4-10 4.3 實驗結果討論 4-17 第5章 結論與未來工作 5-1 5.1 結論 5-1 5.2 未來工作 5-3 參考文獻 6-1 附錄…. 7-1

    [1] D. C. Klein, R. Y. Moore, and S. M. Reppert, “Suprachiasmatic nucleus: the minds clock,” Oxford University Press, 1991.
    [2] M. Hastings, J. S O’Neill, and E. S Maywood, “Circadian clocks: regulators of endocrine and metabolic rhythms,” Journal of Endocrinology, vol. 195, no. 2, pp. 187-198, 2007.
    [3] C. A. Czeisler, J. F. Duffy, T. L. Shanahan, E. N. Brown, J. F. Mitchell, D. W. Rimmer, J. M. Ronda, E. J. Silva, J. S. Allan, J. S. Emens, D. J. Dijk, and R. E. Kronauer, “Stability, precision, and near-24-hour period of the human circadian pacemaker,” Science, vol. 284, no. 5423, pp. 2177-2181, 1999.
    [4] B. Sharma, and S. Feinsilver, “Circadian rhythm sleep disorders: an update,” Sleep and Biological Rhythms, vol. 7, no. 2, pp. 113-124, 2009.
    [5] D. F. Dinges, and N. B. Kribbs, “Performing while sleepy: Effects of experimentally induced sleepiness,” Sleep, Sleepiness, and Performance, 1991.
    [6] A. M. Williamson, and A. M. Feyer, “Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication,” Occupational Environmental Medicine, vol. 57, pp. 649-655, 2000.
    [7] D. Dawson, and K. Reid, “Fatigue, alcohol and performance impairment,” Nature, vol. 388, pp. 235, 1997.
    [8] D. S. Owens, I. Macdonald, P. Tucker, N. Sytnik, P. Totterdell, D. Minors, J. Waterhouse, and S. Folkard, “Diurnal variations in the mood and performance of highly practised young women living under strictly controlled conditions,” Psychology, vol. 91, pp. 41-60, 2000.
    [9] M. P. Johnson, J. F. Duffy, D. J. Dijk, J. M. Ronda, C. M. Dyal, and C. A. Czeisler, “Short-term memory, alertness and performance: a reappraisal of their relationship to body temperature,” Journal of Sleep Research, vol. 1, no. 1, pp. 24-29, 1992.
    [10] J. Horne, and L. Reyner, “Vehicle accidents related to sleep: a review,” Occupational Environmental Medicine, vol. 56, no. 5, pp. 289-294, 1999.
    [11] H. P. A. V. Dongen, “Inter and intra-individual differences in circadian phase,” Leiden University Press, 1998.
    [12] J. Foret, O. Benoit, and S. R. Parola, “Sleep schedules and peak times of oral temperature and alertness in morning and evening ‘types’,” Ergonomics, vol. 25, no. 9, pp. 821-827, 1982.
    [13] G. A. Kerkhof, and H. P. A. V. Dongen, “Morning-type and eveningtype individuals differ in the phase position of their endogenous circadian oscillator,” Neuroscience Letters, vol. 218, pp.153-156, 1996.
    [14] J. F. Duffy, D. J. Dijk, E. F. Hall, and C. A. Czeisler, “Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people,” Journal of Investigative Medicine, vol. 47, no. 3, pp. 141-150, 1999.
    [15] E. K. Baehr, W. Revelle, and C. I. Eastman, “Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness-eveningness,” Journal of Sleep Research, vol. 9, no. 2, pp. 117-127, 2000.
    [16] V. Mongrain, S. Lavoie, B. Selmaoui, J. Paquet, and M. Dumont, “Phase relationships between sleep-wake cycle and underlying circadian rhythms in morningness-eveningness,” Journal of Biological Rhythms, vol. 19, no. 3, pp. 248-257, 2004.
    [17] V. Mongrain, J. Paquet, and M. Dumont, “Contribution of the photoperiod at birth to the association between season of birth and diurnal preference,” Neuroscience Letters, vol. 406, no. 1-2, pp. 113-116, 2006.
    [18] A. Adan, and V. Natale, “Gender differences in morningness-eveningness preference,” Chronobiology International, vol. 19, no. 4, pp. 709-720, 2002.
    [19] T. Roenneberg, A. W. Justice, and M. Merrow, “Life between clocks: daily temporal patterns of human chronotypes,” Journal of Biological Rhythms, vol. 18, no. 1, pp. 80-90, 2003.
    [20] J. Taillard, P. Philip, and B. Bioulac, “Morningness/eveningness and the need for sleep,” Journal of Sleep Research, vol. 8, no. 4, pp. 291-295, 1999.
    [21] M. Wittmann, J. Dinich, M. Merrow, and T. Roenneberg, “Social jetlag: misalignment of biological and social time,” Chronobiology International, vol. 23, no. 1-2, pp. 497-509, 2006.
    [22] A. W. Justice, “How to measure circadian rhythms in humans,” Medicographia, vol. 29, no. 1, pp. 84-90, 2007.
    [23] A. Voultsios, D. J. Kennaway, and D. Dawson, “Salivary melatonin as a circadian phase marker: validation and comparison to plasma melatonin,” Journal of Biological Rhythms, vol. 12, no. 5, pp. 457-466, 1997.
    [24] E. J. W. V. Someren, and E. Nagtegaal, “Improving melatonin circadian phase estimates,” Sleep Medicine, vol. 8, no. 6, pp. 590-601, 2007.
    [25] D. B. Boivin, and C. A. Czeisler, “Resetting of circadian melatonin and cortisol rhythms in humans by ordinary room light,” Neuroreport, vol. 9, no. 5, pp. 779-782, 1998.
    [26] J. M. Zeitzer, D. J. Dijk, R. E. Kronauer, E. N. Brown, and C. A. Czeisler, “Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression,” Journal of Physiology, vol. 526, no. 3, pp. 695-702, 2000.
    [27] S. Benloucif, H. J. Burgess, E. B. Klerman, A. J. Lewy, B. Middleton, P. J. Murphy, B. L. Parry, and V. L. Revell, “Measuring melatonin in humans,” Journal of Clinical Sleep Medicine, vol. 4, no. 1, pp. 66-69, 2008.
    [28] A. J. Lewy, N. L. Cutler, and R. L. Sack, “The endogenous melatonin profile as a marker for circadian phase position,” Journal of Biological Rhythms, vol. 14, no. 3, pp. 227-236, 1999.
    [29] J. Waterhouse, B. Drust, D. Weinert, B. Edwards, W. Greqson, G. Atkinson, S. Kao, S. Aizawa, and T. Reilly, “The circadian rhythm of core temperature: origin and some implications for exercise performance,” Chronobiology International, vol. 22, no. 2, pp. 207-225, 2005.
    [30] K. Kräuchi, “How is the circadian rhythm of core body temperature regulated,” Clinical Autonomic Research, vol. 12, no. 3, pp. 147-149, 2002.
    [31] K. Kräuchi, C. Cajochen, and A. W. Justice, “A relationship between heat loss and sleepiness: effects of postural change and melatonin administration,” Journal of Applied Physiology, vol. 83, no. 1, pp. 134-139, 1997.
    [32] S. S. Campbell, and R. J. Broughton, “Rapid decline in body temperature before sleep: fluffing the physiological pillow,” Chronobiology International, vol. 11, no. 2, pp. 126-131, 1994.
    [33] J. E. McKenzie, and D. W. Osgood, “Validation of a new telemetric core temperature monitor,” Journal of Thermal Biology, vol. 29, no. 7-8, pp. 605-611, 2004.
    [34] R. M. Buijs, J. Wortel, J. J. V. Heerikhuize, M. G. P. Feenstra, G. J. T. Horst, H. J. Romijn, and A. Kalsbeek, “Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway,” European Journal of Neuroscience, vol. 11, no. 5, pp. 1535-1544, 1999.
    [35] E. V. Cauter, R. Leproult, and D. J. Kupfer, “Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol,” Clinical Endocrinology & Metabolism, vol. 81, pp. 2468-2473, 1996.
    [36] L. Weibel, and G. Brandenberger, “The start of the quiescent period of cortisol remains phase locked to the melatonin onset despite circadian phase alterations in humans working the night schedule,” Neuroscience Letters, vol. 318, no. 2, pp. 89-92, 2002.
    [37] A. A. Borbély, “A two process model of sleep regulation,” Human Neurobiology, vol. 1, no. 3, pp. 195-204, 1982.
    [38] S. Daan, D. G. Beersma, and A. A. Borbély, “Timing of human sleep: recovery process gated by a circadian pacemaker,” America Journal of Physiology, vol. 246, no. 2, pp. 161-183, 1984.
    [39] K. Kräuchi, C. Cajochen, and A. W. Justice, “Thermophysiologic aspects of the three-process-model of sleepiness regulation,” Clinics in Sports Medicine, vol.24, no. 2, pp. 287-300, 2005.
    [40] S. K. Martin, and C. I. Eastman, Chronobiology International, vol. 19, no. 4, pp. 695-707, 2002.
    [41] G. J. Louis, H. V. Gizycki, F. Zizi, J. Fookson, A. Spielman, J. Nunes, R. Fullulove, and H. Taub, “Determination of sleep and wakefulness with the actigraph data analysis software (ADAS),” Sleep, vol. 19, no. 9, pp.739-743, 1996.
    [42] C. A. Kushida, A. Chang, C. Gadkary, C. Guilleminault, O. Carrillo, and W. C. Dement, “Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients,” Sleep Medicine, vol. 2, no. 5, pp. 389-396, 2001.
    [43] R. Siegmund, M. Tittel, and W. Schiefenh vel, “Activity Monitoring of the Inhabitants in Tauwema, a Traditional Melanesian Village: Rest/Activity Behaviour of Trobriand Islanders (Papua New Guinea),” Biological Rhythm Research, vol. 29, no. 1, pp. 49-59, 1998.
    [44] C. V. C. Bouten, K. T. M. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, “A triaxial accelerometer and portable data processing unit for assessment the assessment of daily physical activity,” IEEE Trans. Biomedical Engineering, vol. 44, no. 3, pp. 136-147, 1997.
    [45] J. A. Horne, and O. Östberg, “A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms,” International Journal of Chronobiology, vol. 4, no. 2, pp. 97-110, 1976.
    [46] T. Simpson, E. R. Lee, and C. Cameron, “Relationships among sleep dimensions and factors that impair sleep after cardiac surgery,” Research in Nursing & Health, vol. 19, no. 3, pp. 213-223, 1996.
    [47] E. Hoddes, V. Zarcone, H. Smythe, R. Phillips, and W. C. Dement, “Quantifiacation of sleepiness: a new approach,” Psychophysiology, vol. 10, no. 4, pp. 431-436, 1973.
    [48] S. D. Youngstedt, D. F. Kripke, J. A. Elliott, and M. R. Klauber, “Circadian abnormalities in older adults,” Journal of Pineal Research, vol. 31, no. 3, pp. 264-272, 2001.
    [49] B. Middleton, J. Arendt, and B. M. Stone, “Complex effects of melatonin on human circadian rhythms in Constant Dim Light,” Journal of Biological Rhythms, vol. 12, no. 5, pp. 467-477, 1997.
    [50] B. Middleton, J. Arendt, and B. M. Stone, “Human circadian rhythms in constant dim light (8 lux) with knowledge of clock time,” Journal of sleep Research, vol. 5, no. 2, pp. 69-76, 1996.
    [51] A. Satlin, M. H. Teicher, H. R. Lieberman, R. J. Baldessarini, L. Volicer, and Y. Rheaume, “Circadian locomotor activity rhythms in Alzheimer's disease,” Neurosychopharmacology, vol. 5, no. 2, pp. 115-126, 1991.
    [52] S. Binkley, “Wrist motion rhythm phase shifts in travelers may differ from changes in time zones,” Physiology & Behavior, vol. 55, no. 5, pp. 967-970, 1994.
    [53] C. A. Glod, M. H. Teicher, A. Polcari, C. E. McGreenery, and Y. Ito, “Circadian rest-activity disturbances in children with seasonal affective disorder,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 36, no. 2, pp. 188-195, 1997.
    [54] N. Sakurai, and M. Sasaki, “An activity monitor study on the sleep-wake rhythm of healthy aged people residing in their homes,” Psychiatry and Clinical Neurosciences, vol. 52, no. 2, pp. 253-255, 1998.
    [55] Y. L. Huang, R. Y. Liu, Q. S. Wang, E. J. Van Someren, H. Xu, and J. N. Zhou, “Age-associated difference in circadian sleep-wake and rest-activity rhythms,” Physiology & Behavior, vol. 76, no. 4-5, pp. 597-603, 2002.
    [56] K. Y. Chen and D. R. Bassett, “The technology of accelerometry-based activity monitors: current and future,” Medicine & Science in Sports & Exercise, vol. 37, no. 11, pp. 490-500, 2005.
    [57] R. J. Cole, D. F. Kripke, W. Gruen, D. j. Mullaney, and J. C. Gillin, “Automatic sleep/wake identification from wrist activity,” Sleep, vol. 15, no. 5, pp. 461-469, 1992.
    [58] A. Sadeh, K. M. Sharkey, and M. A. Carskadon, “Activity-based sleep-wake identification: an empirical test of methodological issues,” Sleep, vol. 17, no. 3, pp. 201-207, 1994.
    [59] F. Halberg, Y. L. Tong, and E. A. Johnson, “Circadian system phase: an aspect of temporal morphology: procedures and illustrative examples,” The Cellular Aspects of Biorhythms, pp. 20-48, 1967.
    [60] S. A. Israel, M. R. Klauber, D. W. Jones, D. F. Kripke, J. Martin, W. Mason, R. P. Horenczyk, and R. Fell, “Variations in circadian rhythms of activity, sleep and light exposure related to dementia in nursing home patients,” Sleep, vol. 20, no. 1, pp. 18-23, 1997.
    [61] M. Brennan, M. Palaniswami, and P. Kamen, “Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate,” IEEE Trans. Biomed. Eng., vol. 48, no. 11, pp. 1342-1347, 2001.
    [62] M. P. Tulppo, T. H. Makikallio, T. E. Takala, T. Seppanen, and H. V. Huikuri, “Quantitative beat-to-beat analysis of heart rate dynamics during exercises,” America Journal of Physiology, vol. 271, no. 1, pp. 244-252, 1996.
    [63] P. Paavilainen, I. Korhonen, J. Lötjönen, L. Cluitmans, M. Jylhä, A. Särelä, and M. Partinen, “Circadian activity rhythm in demented and non-demented nursing-home residents measured by telemetric actigraphy,” Journal of Sleep research, vol. 14, no. 1, pp. 61-68, 2005.
    [64] M. M. Massin, K. Maeyns, N. Withofs, F. Ravet, and P. Gérard, “Circadian rhythm of heart rate and heart rate variability,” Archives of Disease in Childhood, vol. 83, no. 2, pp. 179-182, 2000.

    無法下載圖示 校內:2016-08-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE