| 研究生: |
葉川瑜 Yeh, Chuan-Yu |
|---|---|
| 論文名稱: |
使用單一掃描輸入之高效率測試資料壓縮技術 An Efficient Test Data Compression Scheme with Single Scan Input |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 廣播掃描 、測試壓縮 、測試用設計 |
| 外文關鍵詞: | Broadcast Scan, Test Compression, Design-for-Testability (DFT) |
| 相關次數: | 點閱:36 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出了一種只需要單一掃描輸入之高效率測試資料壓縮方案,能夠以低面積成本實現低測試資料量。我們還提出了一種新的解壓縮器配置決策程序來決定解壓縮器的測試配置,以確保解壓縮器能提供高測試覆蓋率。此外,我們設計了一個fixed-to-fixed X-masking解碼器以及解壓縮器配置控制器,來進一步減少每個測試向量額外所需的控制資料量與測試時間。在多個基準電路下的實驗結果確認所提出的方案相對於現有的測試資料壓縮技術在測試資料量、測試覆蓋率以及面積開銷方面的優化效果。
This paper proposed an efficient test data compression scheme that can achieve low test data volume with a low area cost and only needs a single scan input. A novel configuration determination procedure is proposed to determine the appropriate test configurations of the test decompressor to ensure high test coverage. Furthermore, a fixed-to-fixed X-masking integrated decoder and configuration controller are designed to reduce additional control bits and cycles of each test pattern. The experimental results with benchmark circuits confirm the optimized effectiveness for test data volume, test coverage, and area overhead of the proposed scheme over existing techniques.
[1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, 2006.
[2] R. Kapur, S. Mitra, and T. W. Williams, “Historical Perspective on Scan Compression, ” IEEE Design & Test of Computers, vol. 25, no. 2, pp. 114-120, March-April 2008.
[3] N. A. Touba, “Survey of Test Vector Compression Techniques,” IEEE Design & Test of Computers, vol. 23, no. 4, pp. 294-303, April 2006.
[4] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, "Embedded deterministic test," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 5, pp. 776-792, May 2004.
[5] Y. Huang, S. Milewski, J. Rajski, J. Tyszer, and C. Wang, “Low Cost Hypercompression of Test Data,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2964-2975, Oct. 2020.
[6] K.-J. Lee, J.-J. Chen, and C.-H. Huang, “Using a single input to support multiple scan chains,” in Proc. ICCAD, 1998, pp. 74-78.
[7] K.-J. Lee, J.-J. Chen, and C.-H. Huang, “Broadcasting test patterns to multiple circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 12, pp. 1793-1802, Dec. 1999.
[8] A. R. Pandey and J. H. Patel, “An incremental algorithm for test generation in Illinois scan architecture based designs,” in Proc. 2002 Design, Automation and Test in Europe Conference and Exhibition, 2002, pp. 368-375.
[9] A. Chandra, H. Yan, and R. Kapur, “Multimode Illinois Scan Architecture for Test Application Time and Test Data Volume Reduction,” in Proc. 25th IEEE VLSI Test Symposium (VTS’07), 2007, pp. 84-92.
[10] S. Samaranayake, E. Gizdarski, N. Sitchinava, F. Neuveux, R. Kapur, and T. W. Williams, “A reconfigurable shared scan-in architecture,” in Proc. 21st VLSI Test Symposium, 2003, pp. 9-14.
[11] P. Wohl, J. A. Waicukauski, and S. Ramnath, “Fully X-tolerant combinational scan compression,” in Proc. 2007 IEEE International Test Conference, 2007, pp. 1-10.
[12] A. H. El-Maleh, M. I. Ali, and A. A. Al-Yamani, “A Reconfigurable Broadcast Scan Compression Scheme Using Relaxation Based Test Vector Decompos,” in Proc 16th Asian Test Symposium (ATS 2007), 2007, pp. 91-94.
[13] P. Wohl, J.A. Waicukauski, R. Kapur, S. Ramnath, E. Gizdarski, T. W. Williams, and P. Jaini, “Minimizing the Impact of Scan Compression,” in Proc 25th IEEE VLSI Test Symposium (VTS’07), 2007, pp. 67-74.
[14] A. H. El-Maleh, M. I. Ali and A. A. Al-Yamani, “Reconfigurable broadcast scan compression using relaxation-based test vector decomposition,” IET Computers and Digital Techniques, vol. 3, no. 2, pp. 143-161, March 2009.
[15] A. Chandra, R. Kapur, and Y. Kanzawa, “Scalable Adaptive Scan (SAS),” in Proc 2009 Design, Automation & Test in Europe Conference & Exhibition, 2009, pp. 1476-1481.
[16] S. Seo, Y. -W. Lee, H. Lim, and S. Kang, “Advanced Low Pin Count Test Architecture for Efficient Multi-Site Testing,” IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 3, pp. 391-403, Aug. 2020.
[17] A. Chandra, S. Kulkarni, S. Chebiyam, and R. Kapur, “Designing efficient combinational compression architecture for testing industrial circuits,” in Proc 2015 19th International Symposium on VLSI Design and Test, 2015, pp. 1-6.
[18] T. Yu, A. Cui, M. Li, and A. Ivanov, “A new decompressor with ordered parallel scan design for reduction of test data and test time,” in Proc 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 641-644.
[19] J.-Z. Chen and K.-J. Lee, “Test Stimulus Compression Based on Broadcast Scan With One Single Input,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 1, pp. 184-197, Jan. 2017.
[20] C.-W. Chen, Y.-C. Kong⸴ and K.-J. Lee, “Test Compression with Single-Input Data Spreader and Multiple Test Sessions,” in Proc. IEEE 26th Asian Test Symposium (ATS), Nov. 2017, pp. 28-33.
[21] A. Sanghani, B. Yang, K. Natarajan, and C. Liu, “Design and implementation of a time-division multiplexing scan architecture using serializer and deserializer in GPU chips,” in Proc 29th VLSI Test Symposium, 2011, pp. 219-224.
[22] A. Chandra, S. Chebiyam, and R. Kapur, “A Case Study on Implementing Compressed DFT Architecture,” in Proc 2014 IEEE 23rd Asian Test Symposium, 2014, pp. 336-341.
[23] S. Chebiyam, A. Chandra, and R. Kapur, “Designing effective scan compression solutions for industrial circuits,” in Proc Sixteenth International Symposium on Quality Electronic Design, 2015, pp. 167-172.
[24] Y. Liu et al., “X-Tolerant Compactor maXpress for In-System Test Applications With Observation Scan,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 8, pp. 1553-1566, Aug. 2021.
[25] Y. Liu et al., “X-Tolerant Tunable Compactor for In-System Test,” in Proc 2020 IEEE International Test Conference (ITC), 2020, pp. 1-10.
[26] Huaxing Tang, Chen Wang, J. Rajski, S. M. Reddy, J. Tyszer, and I. Pomeranz, “On efficient X-handling using a selective compaction scheme to achieve high test response compaction ratios,” in Proc 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design, 2005, pp. 59-64.
[27] J. Rajski, J. Tyszer, G. Mrugalski, W.-T. Cheng, N. Mukherjee, and M. Kassab, “X-Press Compactor for 1000x Reduction of Test Data,” in Proc 2006 IEEE International Test Conference, 2006, pp. 1-10.
[28] J. Rajski, J. Tyszer, G. Mrugalski, W.-T. Cheng, N. Mukherjee, and M. Kassab, “X-Press: Two-Stage X-Tolerant Compactor With Programmable Selector,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 1, pp. 147-159, Jan. 2008.
[29] B. Nadeau-Dostie, “Method of masking corrupt bits during signature analysis and circuit for use therewith,” U.S. Patent 6 745 359, Jun. 1, 2004.
[30] IEEE Standard for Extensions to Standard Test Interface Language (STIL) for Test Flow Specification, IEEE Std 1450, 9 Feb. 2018.
[31] DFTMAX Ultra, Synopsys scan compression technology, https://www.synopsys.com/content/dam/synopsys/implementation%26signoff/white-papers/dftmax-ultra-wp.pdf
[32] Design Compiler, Synopsys RTL synthesis solution, https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
[33] DFT Compiler, Synopsys DFT synthesis solution, https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/testmax-dft-ds.pdf
[34] TetraMAX, Synopsys pattern generation solution, https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/testMAX-atpg-ds.pdf
[35] IWLS2005 Benchmarks. https://iwls.org/iwls2005/benchmarks.html