| 研究生: |
黃俊欽 Huang, Jun-Chin |
|---|---|
| 論文名稱: |
使用GaAs/AlGaAs 緩衝層的
AlGaAs/InxGa1-xAs 異質結構場效電晶體之研究 Study of AlGaAs/InxGa1-xAs Heterostructure Field-Effect Transistors Using AlGaAs/GaAs Buffer |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 超晶格緩衝層 、砷化鋁鎵/砷化銦鎵 |
| 外文關鍵詞: | AlGaAs/InxGa1-xAs HFET, superlattice buffer |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本文中比較兩種不同銦成分通道層的AlGaAs/InGaAs 異質結構場效電晶體及摻雜對元件特性的影響。
我們利用超晶格式緩衝層來形成一個能障,使得電子不易注入至緩衝層,可以增進載子的限制力並改善元件的夾止及飽和特性。在高溫,元件也呈現良好的夾止及飽和特性。此外,我們利用摻雜載子提供層來增加通道中載子的濃度及提高元件的電流和異質轉導值。我們比較通道層中兩種不同銦成分的元件特性差別,由實驗結果得知通道中含較高的銦成分者有較大的載子移動性、異質轉導值及截止頻率。
我們利用濕蝕刻的方式來薄化蕭基層,因而有效地改善元件的特性。由實驗結果顯示較薄的蕭基層增進了元件的夾止特性並且提高了最大的異質轉導值。我們同時也探討了AlGaAs/InGaAs 異質結構場效電晶體的溫度特性。元件的電流及異質轉導值會隨著溫度上升而減少。我們也量測AlGaAs/InGaAs 異質結構場效電晶體的高頻、功率、雜訊特性。
Abstract
In this thesis, AlGaAs/InGaAs field-effect transistors using different indium content are fabricated. Furthermore, the -doped layer effect on the device characteristics has been studied.
A superlattice buffer inserted between channel and substrate for preventing electrons inject into substrate, resulting in improving carrier confinement in the channel and improving saturation and pinch-off characteristics, is studied. At high temperature, good saturation and pinch-off characteristics are observed. In addition, we use delta-doped supply carrier layer to enhance carrier concentration in the channel and to increase current density and extrinsic transconductance. The experimental results show higher carrier mobility, extrinsic transconductance, and cut-off frequency can be obtained by using higher indium composition.
By using wet etching of the Schottky layer, the device breakdown characteristics can be observed. The results show that the thin Schottky layer can improve the pinch-off characteristic and extrinsic transconductance obviously. The temperature-dependent characteristics of AlGaAs/InGaAs heterostructure field-effect transistors have also been studied. The current density and extrinsic transconductance decrease with increasing temperature.We also measure microwave, power, and noise characteristics of AlGaAs/InGaAs heterostructure field-effect transistors.
References
[1] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.
[2] G. C. Dacey and I. M. Ross, “Unipolar field-effect transistor,” Proc. IRE 41, 970 (1953)
[3] Fazal Ali and Alitya Gupta, “HEMTs and HBTs; Devices, Fabrication, and Circuits”, p.82
[4] Yum Ando and B. Tomohird Itoh,“ Analysis of Charge Control in Pseudomorphic Two-Dimensional Electron Gas Field-effect Transistors.” IEEE Trans. Electron Devices, vol. 35, p.2295, 1992
[5] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “a new Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions”, Jap. J. Appl. Phys. vol.19, p225, 1980.
[6] T. S. Henderson, W. T. Masselink, W. Kopp and H. Morkoc, “Determination of carrier saturation velocity in high-performance InyGa1-yAs/AlxGa1-xAs
modulation-doped field-effect transistors,” IEEE Electron Device Lett, vol.
EDL-7, p.228,1986
[7] B. Vinter, “subband and charge control in a two-dimensional electron gas field-effect transistor,” Appl. Phys. Lett., vol44, pp. 307-309,1984.
[8] Karmalkar, G. Ramesh, “A simple yet comprehensive unified physical model of the 2D electron gas in delta-doped and uniformly doped high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 47, pp.308, 2000.
[9] Y. Ando, T. Itoh, “Accurate modeling for parasitic source resistance in two-dimensional electron gas field-effect transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 1036, 1989.
[10] L. D. Nguyen, W. J. Schaff, P. J. Tasker, A. N. Lepore, L. F. Palmateer, M. C. Foisy, L. F. Eastman, “Charge control, DC, and RF performance of a 0.35 um pseudomorphic AlGaAs/InGaAs modulation-doped field-effect transistor,” IEEE Trans. Electron Devices, vol. 35, pp. 139, 1988.
[11] Y. C. Pao and J. S. Harris, Jr. “ Two-dimensional Devices Simulation for PHEMT Material and Process Control” Appl. Phys. Lett., vol4, p307, 1983.
[12] Y. J. Chan, C. S. Wu, C. H. Chen, J. L. Shieh, J. I. Chyi, “Characteristics of a In0.52(AlxGa1-x)0.48As/In0.53Ga0.47As (0<x<1) Heterojunction and Its Application on HEMT’s” IEEE Trans. Electron Devices, vol.44, pp.708, 1997.
[13] C. Y. Chang, Francis Kai, “GaAs High-Speed Devices”, John Wiely and Sons, New York,1994.
[14] J. Dickmann, Heinrich Daembkes, Member“ Double-side Planar-Doped AlGaAs/InGaAs/AlGaAs MODFET with current Density of 1 A/mm” IEEE electron Device Letters, vol. 12, 1991
[15] Minoru Sawada, Daijiro Inoue, Kohji Matsumura and Yasoo Harada,“ A New Two-Mode Channel FET(TMT) for Super-Low-Noise and High-Powe Applications” IEEE electron Device Letters, vol. 14, 1993
[16] High Efficiency MicroWave POWER AlGaAs/InGaAs PHEMT’s Fabricated by Etch Single Gate Recess” IEEE Trans. Electron Devices, vol. 42, p.1419, 1995.
[17] Kursad Kizilogu, Ming Hu, Duane S. Harvey, and Paul B. Janke, “High-performance AlGaAs/InGaAs/GaAs PHEMT for K and Ka-band Applications.” IEEE MTT-S Digest. p.681. 1999.
[18] M.Hueschen, N. Moll, E. Gowen, and J.Miller, “Pluse Doped MODFET’s”, IEEE, IDEM Technical Digest, p.438, 1984.
[19] A. Fathimulls, J.Abrahams, T. Loughran, H. Hier, “High performance InAlAs/InGaAs HEMTs and MESFETs”, IEEE Electron Device Letters, vol.28, p.1849,1992.
[20] Loi D. Nguyen, William J. Schaff, Paul J. Tasker,” Charge Control, DC, and RF Performance of 0.35μm Pseudomorphic AlGaAs/InGaAs Modulation-Doped Field-Effect Transistor” IEEE Trans. Electron Devices, vol. 35, p.139, 1988.
[21] John C. Huang, S. Jackson, Pamela K. Saledas and Calvin Weichert, ”An AlGaAs/InGaAs Pseudomorphic High Electron Mobility Transistor with Improve Breakdown Voltage for X- and Kμ-Band Power Applications” IEEE transaction on Microwave Theory and Techniques. vol. 41, p.752, 1993.
[22] Ick Moll, Mark R. Hueschen and Alice Fischer-colbare,” Pulse-Doped AlGaAs/InGaAs Pseudomorphic MODFET’s.” IEEE Trans. Electron Devices, vol. 35, p. 879, 1988
[23] C. Gaquier, S. Bollaert, M. Zaknoune, Y. Cordier, D. Theron and Y. Crosier, “Influence on power performances at 60GHz of indium composition in medomorphic HEMTs,”IEEE Electronics Letters vol. 35, pp.1489-1491,1999.
[24] S. R. Bahl, M. H. Leary, J. A. del Alamo, “Mesa sidewall gate leakage in InAlAs/InGaAs HFETs”, IEEE Trans. on Electron Devices, vol. 39, p.2037, 1992.
[25] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, H. M. Shieh, “Charactezation of high performance inverted delta modulation doped (IDMD) GaAs/InGaAs psedomophic heterostructure FETs”, IEEE Trans. on Electron Devices, vol 9, p22, 1993.
[26] G. I. Ng, W. P. Hong, D. Pavlidis, M. Tutt, P. K. Bhattacharya, “Characteristics of stained InGaAs/InAlAs HEMT with optimized transport parameters”, IEEE Electron Device Letters, vol. 9, p439, 1988.
[27] S. R. Bahl, B. R. Bennett, J. A. Alamo, “Doubly stained InAlAs/n-InGaAs HFET with high breakdown voltage”, IEEE Electron Device Letters, vol. 14, no. 1, p. 22, 1993.
[28] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, H. J. Pan, “Temperature-Dependent Investigation of a High-Breakdown Voltage and Low-Leakage Current In0.49Ga0.51P/In0.15Ga0.85As Pseudomorphic HEMT”, IEEE Electron Device Letters, p. 274, 1998.
[29] R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, F. Fantini, “On the e ffects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/InP HEMTs”, IEEE Microwave and Guided Wave Lett., vol. 7, p. 3, 1997.
[30] M. Feng, D. R. Scherrer, P. J. Apostolakis, J. W. Kruse, “Temperature dependent study of the microwave performance of 0.25um gate GaAs MESFETs and GaAs pseudomorphic HEMTs”, IEEE Trans. Electron Devices, vol 43, p.852, 1996.
[31] R.E. Anholt, S. E. Swirhum, “Experimental investigation of the temperature dependence of GaAs FET equivalent circuits”, IEEE Trans. Electron Devices, vol 39, p.2029, 1992.
[32] A. Belache, A. Vanoverschelde, G. Salmer, M. Wolny, “Experimental analysis of HEMT behavior under low-temperature conditions”, IEEE Trans. Electron Devices, vol 38, pp. 3, 1991.
[33] J. P. Ao, Q. M. Zeng, Y. L. Zhao, X. J. Li, W. J. Liu, S. Y. Liu, C. G. Liang, “InP-Based Enhancement-Mode Pseudomorphic HEMT with Strained In0.45Al0.55As Barrier and In0.75Ga0.25As Channel Layers”, IEEE Electron Device Letters, vol. 21, p. 200, 2000.
[34] D. Arnold, T. Henderson and J. Klem,“ High performance inverted and large
current double interface modulation-doped field-effect transistors with the bluk(Al,Ga)As replaced by superlattice at the inverted interface.” Appl. Phys. Lett., vol45, p.902, 1984.
[35] W.J Schaff and L.F. Eastman, ”Superlattice Buffers for GaAs power MESFET’s grown by MBE.” J. Vac. Scl. Technol. 1984.
[36] Enn-Chorng Liou and Kei May Lau, ”Temperature Dependence and Persistent Conductivity of GaAs MESFET’s with Superlattice Buffers” IEEE Trans.
Electron Devices, vol. 35, p.14, 1988.
[37] Tsubaki. K, Tokura. Y Fukui, T. Saito. H.“ Electron wave interference device with vertical superlattices working in large current region” Electronics Letters, vol.25, p.728,1989.
[38] Feller, M.D.; Shunk, S.C.; Kuo, J.M.;Tenant, D.M.; Tell, B.“ Threshold voltage of submicron Ga/sub 0.47/In/sub 0.53/As HIGFETs” Electronics Letters, vol.25, p.975,1989.
[39] Fujihara, A.; Onda, K.; Nakayama, T.; Miyamoto, H.; Ando, Y.; Wakejima, A.; Mizuki, E.; Kuzuhara, M. “Thermally stable InAlAs/InGaAs heterojunction FET with AlAs/InAs superlattice insertion layer” Electronics Letters,vol.32, p.1039,1996.