簡易檢索 / 詳目顯示

研究生: 廖益愷
Liao, Yi-Kai
論文名稱: 應用於 2.4/24 GHz 雙頻接收機之低雜訊放大器及混頻器電路整合設計
Integrated Circuit Designs of Low Noise Amplifier and Mixer Applied to 2.4/24 GHz Dual-band Receiver
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 2.4 GHz24 GHz低雜訊放大器混頻器射頻接收機前端電路
外文關鍵詞: 2.4 GHz, 24 GHz, low noise amplifier, mixer, RF receiver front end circuit
相關次數: 點閱:127下載:60
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為設計應用於 2.4/24 GHz 雙頻接收機前端電路之子電路設計,其中分為兩部分:第一部分為 2.4 GHz 接收機前端電路;第二部分為 24 GHz 接收機前端電路。皆使用 TSMC 0.18μm CMOS 1P6M 製程實現設計。
    2.4 GHz 接收機前端電路由低雜訊放大器與混頻器組成,低雜訊放大器部分採用電容交叉耦合對來達到 gm-boosting 的效果,在達到輸入匹配的同時相較於共閘極架構減少一半的功耗,且也能改善共閘極架構雜訊指數過高的問題;混頻器採用被動式混頻器的架構,有較佳的線性度且沒有直流消耗;基頻放大器使用共閘極放大器並在輸出端使用一低通濾波器,將混頻後之諧波項給濾除,只留下所需基頻訊號。2.4 GHz接收機前端電路採用供應電壓 1.2V,量測結果顯示轉換增益為 20 dB;雜訊指數為 9.1dB;P1dB 為-22 dB;IIP3 為-13 dB;功率消耗為 3.78 mW。
    24 GHz 接收機前端電路主要架構由三級串接低雜訊放大器與主動式混頻器組成,透過三級串接放大器能在達到高增益與低雜訊指數的同時兼顧到線性度,將提高接收機的靈敏度;混頻器採用主動式架構,並加上級間電感提升電路整體的增益與線性度;輸出端緩衝放大器使用共汲級架構。24 GHz 接收機前端電路採用供應電壓 1.8V,量測結果顯示轉換增益為 14 dB;雜訊指數為 7 dB;P1dB 為-26 dB;IIP3 為-21.5 dB;功率消耗為 31.14 mW。

    This thesis presents the subcircuit designs of 2.4/24 GHz radio frequency receiver front end circuit, which can be divided into two parts by the operating frequency. The first part is a design of 2.4 GHz receiver front end circuit, the second part is a design of 24 GHz receiver front end circuit. All the circuits are fabricated by the TSMC 0.18μm CMOS process.
    2.4 GHz receiver front end circuit is composed of low noise amplifier and mixer. Low noise amplifier adopts the gm-boosting technique is implemented by a capacitor cross-coupled pair. Not only match the input impedance but reduce half of the power consumption and have lower noise contribution compared to common gate structure at that same time. The Mixer utilizes a passive mixer, the best advantage of which is it has no DC consumption and better linearity than the active mixer. A common gate amplifier is used to be a baseband amplifier, and there is a low pass filter in its output node to filter out the unwanted harmonics which generates by mixing. The proposed 2.4GHz receiver front end circuit achieves the conversion gain of 20 dB with the noise figure of 9.1 dB, provides the P1dB and IIP3 of -22 dB and -13 dB, while taking the 3.78 mW from a 1.2 V supply voltage.
    24 GHz receiver front end circuit is composed of three stages low noise amplifier and active mixer. The three stages low noise amplifier can simultaneously achieve high gain, low noise, and good linearity by proper design, and it will increase the sensitivity of the receiver system. The mixer in this system is an active mixer, which can raise the conversion gain and linearity by the interstage inductor. In the end, the output buffer adopts the common drain structure. 24GHz receiver front end circuit achieves the conversion gain of 14 dB with the noise figure of 7 dB, provides the P1dB and IIP3 of -26 dB and -21.5 dB, while taking the 31.14 mW from a 1.8 V supply voltage.

    第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 論文架構 4 第二章 2.4 GHz接收機前端電路 5 2.1 低雜訊放大器簡介 5 2.1.1 低雜訊放大器重要參數 6 2.1.2 低雜訊放大器基本架構 15 2.2 混頻器簡介 19 2.2.1 混頻器重要參數 19 2.2.2 混頻器基本架構 22 2.3 2.4 GHz 接收機前端電路設計 30 2.3.1 2.4 GHz 低雜訊放大器 31 2.3.2 2.4 GHz 混頻器 34 2.4 2.4 GHz 接收機前端電路模擬結果 38 2.4.1 2.4 GHz 低雜訊放大器 38 2.4.2 2.4 GHz 混頻器 38 2.4.3 2.4 GHz 接收機前端電路 43 第三章 24 GHz 接收機前端電路 45 3.1 K-Band電路設計考量 45 3.2 24 GHz 接收機前端電路設計 49 3.2.1 24 GHz 低雜訊放大器 50 3.2.2 24 GHz 混頻器 52 3.3 24 GHz 接收機前端電路模擬結果 55 3.3.1 24 GHz 低雜訊放大器 55 3.3.2 24 GHz 混頻器 58 3.3.3 24 GHz 接收機前端電路 60 第四章 量測結果與討論 62 4.1 2.4 GHz 接收機前端電路 62 4.1.1 量測環境設置 62 4.1.2 量測結果與討論 66 4.2 24 GHz 接收機前端電路 71 4.2.1 量測環境設置 71 4.2.2 量測結果與討論 75 第五章 結論 80 參考文獻 81

    [1] 5G spectrum recommendations - April 2017. Available on: http://www.5gamericas.org /files/9114/9324/1786/5GA_5G_Spectrum_Recommendations_2017_FINAL.pdf
    [2] Seok-Bae Park and M. Ismail, “A reconfigurable CMOS analog baseband for compact TDD wireless radio transceivers,” Midwest Symposium on Circuits and Systems, pp. 1386–1389, 2005.
    [3] H. Hsu, Q. Duan and Y. Liao, "A low power 2.4/5.2GHz concurrent receiver using current-reused architecture," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1398-1401, 2016.
    [4] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” in IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
    [5] Y. Chen, H. Hsieh and L. Lu, “A 24-GHz Receiver Frontend With an LO Signal Generator in 0.18-μm CMOS,” in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 5, pp. 1043-1051, May 2008.
    [6] C. Y. Cha and S. G. Lee, “A 5.2-GHz LNA in 0.35-μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance,” in IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 669–672, Apr. 2003.
    [7] X. Li, S. Shekar, and D. J. Allstot, “Gm-Boosted Common-Gate LNA and Differential Colpitts VCO/QVCO in 0.18-μm CMOS,” in IEEE J. Solid-State Circuits, vol. 40, pp. 2609–2618, Dec. 2005.
    [8] H. Darabi and J. Chiu, “A noise cancellation technique in active-RF CMOS mixers,” in IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628-2632, Dec. 2005.
    [9] T.W. Kim, B. Kim and K. Lee, “Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors,” in IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 223-229, Jan. 2004.
    [10] B. Razavi, RF Microelectronics, second edition, Prentice Hall, Inc., 2012.
    [11] J.B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev., 32, pp. 97-109, Jul. 1928.
    [12] H. Nyquist, “Thermal agitation of electricity in conductors,” Phys. Rev., 32, pp. 110-113, Jul. 1928.
    [13] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
    [14] B. Razavi, Ran-Hong Yan and K. F. Lee, “Impact of distributed gate resistance on the performance of MOS devices,” in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 11, pp. 750-754, Nov. 1994.
    [15] A. van der Ziel, “Noise in solid-state devices and lasers,” in Proceedings of the IEEE, vol. 58, no. 8, pp. 1178-1206, Aug. 1970
    [16] D. Woods, “Reappraisal of the unconditional stability criteria for active 2-port networks in terms of S parameters,” in IEEE Transactions on Circuits and Systems, vol. 23, no. 2, pp. 73-81, February 1976.
    [17] M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2303-2311, Dec. 1992.
    [18] D. M. Pozar, Microwave Engineering, fourth edition, John Wiley and Sons, Inc., 2011.
    [19] W. Guo and D. Huang, “The noise and linearity optimization for a 1.9-GHz CMOS low noise amplifier,” Proceedings. IEEE Asia-Pacific Conference on ASIC, pp. 253-257, 2002.
    [20] B. Toole, C. Plett and M. Cloutier, “RF circuit implications of moderate inversion enhanced linear region in MOSFETs,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 2, pp. 319-328, Feb. 2004,
    [21] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: A simple physical model,” in IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15–25, Jan 2000.
    [22] W. Zhuo et al., “A capacitor cross-coupled common-gate low-noise amplifier,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 12, pp. 875-879, Dec. 2005
    [23] Q. Huang, F. Piazza, P. Orsatti, and T. Ohguro, “The impact of scaling down to deep submicron on CMOS RF circuits,” in IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1023–1036, Jul. 1998.
    [24] Fiorelli, R.; Peralías, E.; Silveira, F., “An All-Inversion-Region gm/ID Based Design Methodology for Radiofrequency Blocks in CMOS Nanometer Technologies,” in Advances in Wireless Technologies and Telecommunication; IGI Global: Hershey, PA, USA, pp. 15–39, 2012.
    [25] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
    [26] E. Sacchi, I. Bietti, S. Erba, L. Tee, P. Vilmercati, and R. Castello, “A 15 mW, 70 kHz 1/f corner direct conversion CMOS receiver,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 459-462, 2003.
    [27] M. Valla, G. Montagna, R. Castello, R. Tonietto, and I. Bietti, “A 72-mW CMOS 802.11a direct conversion front-end with 3.5-dB NF and 200-kHz 1/f noise corner,” in IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 970–977, Apr. 2005.
    [28] A. Mirzaei, H. Darabi, 1. C. Leete, X. Chen, K. Juan, and A. Yazdi, “Analysis and optimization of current-driven passive mixers in narrowband direct-conversion receivers,” in IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2678-2688, Oct. 2009.
    [29] J. N. Burghartz and B. Rejaei, “On the design of RF spiral inductors on silicon,” in IEEE Transactions on Electron Devices, vol. 50, no. 3, pp. 718–729, Mar. 2003.
    [30] A.M. Niknejad and R. G. Meyer, “Analysis of Eddy-Current Losses Over Conductive
    Substrates with Applications to Monolithic Inductors and Transformers,” in IEEE Transactions on Microwave Theory and Techniques., vol. 49, no. 1, pp.166-176, Jan. 2001.
    [31] T. O. Dickson et al., “The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks,” in IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1830-1845, Aug. 2006.
    [32] K. Kuhn et al., “A comparison of state-of-the-art NMOS and SiGe HBT devices for analog/mixed-signal/RF circuit applications,” Digest of Technical Papers. 2004 Symposium on VLSI Technology, pp. 224-225, 2004.
    [33] H. Zhang and E. Sánchez-Sinencio, “Linearization Techniques for Cmos Low Noise Amplifiers: A tutorial,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 22–36, Jan. 2011.
    [34] B. Toole, C. Plett, and M. Cloutier, “RF circuit implications of moderate inversion enhanced linear region in MOSFETS,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 2, pp. 319–328, Feb. 2004.
    [35] R. Brandolini, M., Rossi, P., Sanzogni, D., Svelto, F., “A +78 dBm IIP2 CMOS direct downconversion mixer for fully integrated UMTS receivers,” in IEEE J. Solid-State Circuits, vol. 41(3), pp. 552- 559, March 2006.
    [36] M. Camus et al., “A 5.4 mW 0.07 mm2 2.4 GHz Front-End Receiver in 90 nm CMOS for IEEE 802.15.4 WPAN Standard,” in IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1327–1383, Jun. 2008
    [37] T. Nguyen et al., “A Low-Power RF Direct-Conversion Receiver/Transmitter for 2.4-GHz-Band IEEE 802.15.4 Standard in 0.18-μm CMOS Technology,” in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4062–4071, Dec. 2006
    [38] S. Lee, L. Wang, T. Chen and C. Yu, “A low-power RF frontend with merged LNA, differential power splitter, and quadrature mixer for IEEE 802.15. 4 (ZigBee) applications,” 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1492–1495, 2012.
    [39] C. Chen, J. Wu, D. Huang and L. Shi, “A Low-Power 2.4-GHz Receiver Front End With a Lateral Current-Reusing Technique,” in IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 61, pp. 564 -569, 2014.
    [40] A. Mazzanti, M. Sosio, M. Repossi and F. Svelto, “A 24 GHz Subharmonic Direct Conversion Receiver in 65 nm CMOS,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 88-97, Jan. 2011.
    [41] T. Zhang, V. Subramanian and G. Boeck, “CMOS K-Band Receiver Architectures for Low-IF Applications,” IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Integration Technologies, pp. 61-64, September. 2011.
    [42] V. Subramanian, T. Zhang and G. Boeck, “Low Noise 24 GHz CMOS Receiver for FMCW Based Wireless Local Positioning,” in IEEE Microwave and Wireless Components Letters, vol. 21, no. 10, pp. 553-555, Oct. 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE