簡易檢索 / 詳目顯示

研究生: 陳念慈
Chen, Nian-Ci
論文名稱: 碳化矽功率元件應用於永磁同步馬達驅動器之系統響應分析
System Response Analysis of Permanent Magnet Synchronous Motor Drive Based on SiC Power Transistor
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 108
中文關鍵詞: 碳化矽功率元件馬達驅動器系統響應
外文關鍵詞: Silicon Carbide Power Components, Motor Drivers, System Response
相關次數: 點閱:55下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,由於碳化矽功率元件的高切換頻率、低導通電阻與高耐溫等優點,使得碳化矽功率元件逐漸取代傳統的矽功率元件,且逐漸應用於馬達驅動系統,使馬達驅動器往高功率密度、高效率與高操作頻率來發展。本論文的目標,係以探討寬能隙碳化矽功率元件應於永磁同步馬達驅動器之系統響應分析。
      本論文使用MATLAB/Simulink整合電壓源變流器、磁場導向控制法與永磁同步馬達,建立一套具碳化矽功率元件的永磁同步馬達驅動控制系統,透過模擬可知,提高變流器的切換頻率,可提升轉速的動態響應,也可改善三相電流的總諧波失真。本論文亦製作一具碳化矽功率元件之3.7 kW永磁同步馬達驅動控制系統,以實測驗證模擬所得到之分析結果。

    In recent years, silicon carbide (SiC) power transistors have gradually replaced traditional silicon power transistors because of SiC’s advantages such as higher switching frequency, lower resistance, and higher operating temperature This thesis presents the system response analysis of permanent magnet synchronous motor driver based on silicon carbide power transistors. In this thesis, MARLAB/Simulink is used to build a permanent magnet synchronous motor drive and control system with silicon carbide power transistors. The motor system is composed of a voltage source inverter, field-oriented control method and a permanent magnet synchronous motor. It can be observed from the simulation that the dynamic response of the speed and the total harmonic distortion of the three-phase current can be improved by increasing switching the frequency.
    Finally, a 3.7kW prototype of permanent magnet synchronous motor driver based on silicon carbide power transistor is implemented. Then, experimental results of the prototype are used to validate simulated results.

    摘要 II 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVIII 符號表 XXIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 7 1.2.1 閘極驅動器 (Gate Driver) 7 1.2.2 寄生元件的影響 8 1.2.3 碳化矽功率元件與傳統矽材料功率元件應用於馬達驅動控制系統的效率比較 15 1.3 研究動機及目的 16 1.4 論文架構 17 第二章 永磁同步馬達與馬達驅動控制器 18 2.1 三相座標軸的馬達數學模型 18 2.2 座標軸轉換 22 2.3 旋轉座標軸系統的馬達數學模型 23 2.4 馬達驅動器 25 2.4.1 電壓源變流器 25 2.4.2 電流源變流器 26 2.4.3 中性點箝位變流器 26 2.4.4 馬達驅動器的比較 28 2.5 馬達控制法 29 2.5.1 磁場導向控制 29 2.5.2 直接轉矩控制 32 2.5.3 馬達控制法的比較 35 2.6 小結 35 第三章 應用碳化矽功率元件於永磁同步馬達驅動控制系統之模擬分析 36 3.1 馬達規格 36 3.2 馬達參數量測 38 3.2.1 定子繞阻的電阻量測 38 3.2.2 磁通鏈的量測 38 3.2.3 交直軸電感量測 39 3.3 SiC MOSFET的規格 42 3.4 磁場導向控制法之控制器設計 43 3.4.1永磁同步馬達動態模型解耦 43 3.4.2 d軸電流迴路之控制器設計 50 3.4.3 q軸電流迴路之控制器設計 51 3.4.4 速度迴路之控制器設計 52 3.4.5 切換頻率與頻寬之探討 53 3.5 模擬與分析 55 3.5.1 永磁同步馬達之轉速模擬與分析 59 3.5.2 永磁同步馬達之轉矩模擬與分析 61 3.5.3 永磁同步馬達之電流模擬與分析 65 3.6 小結 66 第四章 永磁同步馬達驅動系統之硬體規劃與設計 67 4.1 SiC 變頻器 67 4.1.1 閘極驅動電路 68 4.1.2 RDC緩衝電路 77 4.2 輔助電源 80 4.3 三相電流偵測電路 82 4.4 編碼器濾波電路 88 4.5 數位信號處理器 89 4.6 小結 90 第五章 實驗結果 91 5.1 碳化矽功率元件應用於永磁同步馬達驅動控制系統的硬體規劃 91 5.2 實驗結果 95 5.3 小結 101 第六章 結論與未來展望 102 6. 1結論 102 6. 2未來展望 102 參考文獻 103

    [1] 林有德,第三代半導體材料碳化矽發展趨勢研究,中華科技大學電子工程研究所碩士論文, 2015。
    [2] Yole Développement, GaN and SiC power device: market overview, Nov. 2018.
    [3] Yole Développement, Market & Technology trends in Wide BandGap power packaging, 2015.
    [4] E. Fernández, A. Paredes, L. Romeral, and V. Sala, “Analysis of power converters with devices of SiC for applications in electric traction systems,” in Proc. IEEE Int. Power Electron. Motion Control Conf. (PEMC), Sept. 2016, pp. 267-272.
    [5] J. Millan, P. Godignon, X. Perpina, A. P. Tomas, and J. Rebollo, “A survey of wide bandgap power semiconductor devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155–2163, May 2014.
    [6] ABB Corporate Research, Moving from Si to SiC from the End User's Perspective, March 2018.
    [7] S. Ji, Z. Zhang, and F. Wang, “Overview of high voltage SiC power semiconductor devices development and application,” Trans. Electr. Mach. Syst., vol. 1, no. 3, pp. 254–264, Oct. 2017.
    [8] R. Abebe, M. D. Nardo, D. Gerada, G. L. Calzo, L. Papini, and C. Gerada, “High speed drives review : machines, converters and applications,” in Proc. IEEE Ind. Electron. Soc., Oct. 2016, pp. 1-5.
    [9] K. Vogel and A. J. Rossa, “Improving efficiency in AC drives comparison of topologies and device technologies,” in Proc. Int. Exhibition Conf. Power Electron. Intel., Motion, Renewable Energy Energy Manage., May 2014, pp. 1-8.
    [10] B. Zhang, S. Xie, J. Xu, Q. Qian, Z. Zhang, and K. Xu, “A magnetic coupling based gate driver for crosstalk suppression of SiC MOSFETs,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9052-9063, Nov. 2017.
    [11] Q. Qian, J. Yu, J. Zhu, W. Sun, and Y. Yi “Isolated gate driver for SiC MOSFETs with constant negative off voltage,” in Proc. IEEE Appl. Power Electron. Conf. Expo., March. 2017, pp. 1990-1993.
    [12] E. Gurpinar and A. Castellazzi, “Single-phase T-type inverter performance benchmark using Si IGBTs, SiC MOSFETs, and GaN HEMTs,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7148-7160, Nov. 2016.
    [13] STMicroelectronics, “How to fine tune your SiC MOSFET gate driver to minimize losses,” April, 2015.
    [14] A. Manuel and D. Gopinath, “A simulation study of SiC MOSFET characteristics and design of gate drive card using TLP250,” in Proc. Int. Conf. Next Generation Intell. Syst., Sept. 2016, pp. 1-5.
    [15] W. Mysiński, “Gate driver for SiC MOSFET transistors,” Tech. Trans. 2016.
    [16] A. Niwa, T. Imazawa, T. Kimura, T. Sasaya, T. Isobe, and H. Tadano, “Novel dead time control gate driver using the current sensor of SiC-MOSFET,” in Proc. Ann. Conf. IEEE Ind. Electron. Soc. Syst., Nov. 2015, pp. 001651-001656.
    [17] S. K Singh, N. K Pill, F. Guedon, and R. McMahon, “PMSM drive using silicon carbide inverter design-development and testing at elevated temperature,” in Proc. IEEE Int. Conf. Ind. Technol., March. 2015, pp. 2612-2618.
    [18] H. Qin, C. Ma, Z. Zhu, and Y. Yan, “Influence of parasitic parameters on switching characteristics and layout design considerations of SiC MOSFETs,” JPE, vol. 18, no. 4, July 2018.
    [19] Dialog Semiconductor, “PCB Layout Guidelines”, Oct. 2015.
    [20] Lattice Semiconductor Corporation, “Analog layout and grounding techniques”, Sept. 1999.
    [21] IPC, “Generic standard on printed board design”, May. 2003.
    [22] F. Gao, Q. Zhou, P. Wang, and C. Zhang, “A gate driver of SiC MOSFET for suppressing the negative voltage spikes in a bridge circuit,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2339-2353, April 2018.
    [23] H. Zaman, X. Wu, X. Zheng, S. Khan, and H. Ali, “Suppression of switching crosstalk and voltage oscillations in a SiC,” Nov. 2018.
    [24] Y. Yamashita, J. Furuta, S. Inamori, and K. Kobayashi, “Design of RCD snubber considering wiring inductance for MHz-switching of SiC-MOSFET,” in Proc. Workshop Control Modeling Power Electron., July. 2017, pp. 1-6.
    [25] F. Mo, J. Furuta, and K. Kobayashi, “A low surge voltage and fast speed gate driver for SiC MOSFET,” in Proc. Workshop Wide Bandgap Power Devices Appl., Nov. 2016, pp. 282-285.
    [26] Q. Haihong, M. Ceyu, W. Dan. X. Haotian, Z. Ziyue, X. Kefeng, and W. Shishan, “An overview of SiC MOSFET gate drivers,” in Proc. IEEE Conf. Ind. Electron. Appl., June. 2017, pp. 25-30.
    [27] J. Wang and H. S. H. Chung, “A novel RCD level shifter for elimination of spurious turn-on in the bridge-leg configuration,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 976-984, March. 2015.
    [28] A. Paredes, V. Sala, H. Ghorbani, and L. Romeral, “A novel active gate driver for silicon carbide MOSFET,” in Proc. Ann. Conf. IEEE Ind. Electron. Soc., Dec. 2016, pp. 3172-3177.
    [29] A. B. Shitole, H. M. Suryawanshi, G, G. Talapur, and A, A. Chanekar, “A gate driver circuit design for SiC MOSFET based three level NPC inverter with reduced high frequency switching noise,” in Proc. Nat. Power Electron. Conf., Dec. 2017, pp. 185-190.
    [30] M. A. Vogelsberger, C. Zoeller, T. M. Wolbank, and H. Ertl, “Analysis of ultra-fast inverter switching transition dv/dt impact based on SiC semi-conductors to pre-active insulation monitoring of high power,” in Proc. Int. Exhibition Conf. Power Electron. Intel. Motion, Renewable Energy Energy Manag., May. 2015, pp. 1-7.
    [31] T. Shimomura, K. Numakura, D. Sato, and T. Hayashi, “High speed dv/dt control technology for a SiC power module for EV-HEV inverters using a multistage drive circuit,” in Proc. IEEE Energy Convers. Congr. Expo., Sept. 2018, pp. 3542-3546.
    [32] M. Novák, J. Novák, and O. Sivkov, “An SiC inverter for high speed permanent magnet synchronous machines,” in Proc. Appl. Power Electron. Conf. Expos., March 2019, pp. 354-358.
    [33] S. Liu, H. Lin, and T. Wang, “Comparative study of three different passive snubber circuits for SiC power MOSFETs,” Nov. 2018.
    [34] L. Niewiara, M. Skiwski, T. Tarczewski, and L. Grzesiak, “Experimental study of snubber circuit design for SiC power MOSFET,” Dec. 2015.
    [35] L. Wu, J. Zhao, L. Xia, and G. Chen, “Investigation of the effects of snubber capacitors on turn-on overvoltage of SiC MOSFETs,” in Proc. Workshop Wide Bandgap Power Devices Appl., May 2018, pp. 244-249.
    [36] Q. Haihong, X. Haotian, Z. Ziyue, N. Xin, X. Huajuan, and F. Dafeng, “Comparisons of SiC and Si devices for PMSM drives,” in Proc. IEEE Int. Power Electron. Motion Control Conf. (IPEMC-ECCE Asia), May 2016, pp. 22-26.
    [37] C. K. Liu, C. M. Tzeng, R. C. Fang, C. W. Li, and J. Goo, “SiC power module for motor driving system,” in Proc. Int. Conf. Electron. Packaging iMAPS All Asia Conf. (ICEP-IAAC), April 2018, pp. 363-366.
    [38] M. Chinthavali, P. Otaduy, and B. Ozpineci, “Comparison of Si and SiC inverters for IPM traction drive,” in Proc. IEEE Energy Convers. Congr. Expo., Sept. 2010, pp. 3360-3365.
    [39] T. Zhao, J. Wang, A. Q. Huang, and A. Agarwal, “Comparisons of SiC MOSFET and Si IGBT based motor drive systems,” in Proc. IEEE Ind. Appl. Ann. Meeting., Sept. 2007, pp. 331-335.
    [40] Silicon carbide market update: from discrete devices to modules, Available:http://apps.richardsonrfpd.com/Mktg/Tech-Hub/pdfs/YOLEPCIM_2014_SiC_Market_ARROW_KMA_Yole-final.pdf
    [41] DIGITIMES物聯網,「因應電子設備輕薄趨勢GaN、SiC元件效益受重視」(2019, July),Available: https://www.digitimes.com.tw/iot/article
    .asp?cat=158&cat1=20&cat2=30&id=0000480352_xf02xgfe6q556w1it73he
    [42] ROHM,「何謂sic功率元件?」(2019, July),Available: https://www.rohm.com.tw/electronics-basics/sic/sic_what1
    [43] 曹峻嘉,運用疊代學習控制器於永磁同步馬達轉矩漣波抑制之實作,國立成功大學機械工程學系碩士論文,2013。
    [44] K. Kumar, M. Bertoluzzo, and G. Buja, “Impact of SiC MOSFET traction inverters on compact-class electric car range,” in Porc. IEEE Power Electron. Drives Energy Syst. (PEDES), Dec. 2014, pp. 16-19.
    [45] X. Ding, M. Du, C. Duan, H. Guo, R. Xiong, J. Xu, J. Cheng, and P. C. K. Luk, “Analytical and experimental evaluation of SiC-inverter nonlinearities for traction drives used in electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, pp. 146-159, Jan. 2017.
    [46] Q. Guo, C. Zhang, L. Li, M. Wang, L. Pei, and T. Wang, “Maximum efficiency control of permanent magnet synchronous motor system with SiC MOSFETs for Flywheel Energy Storage,” in Proc. Int. Conf. Elect. Mach. Syst., Nov, 2016, pp.1-5.
    [47] E. Fernández and M. Coello, “Control drive for SMPMSM in CSI converter with SiC devices,” in Proc. Central America Panama Convention, Noc. 2017, pp.1-6.
    [48] Z. Davletzhanova, O. Alatise, J. O. Gonzalez, S. Konaklieva, and R. Bonyadi, “Electrothermal stresses in SiC MOSFET and Si IGBT 3L-NPC converters for motor drive applications,” in Proc. PCIM, May 2017, pp. 16-18.
    [49] M. F. Rahman, P. Niknejad, and M. R. Barzegaran, “Comparing the performance of Si IGBT and SiC MOSFET switches in modular multilevel converters for medium voltage PMSM speed control,” in Proc. IEEE Texas Power Energy Conf. (TPEC), Feb. 2018, pp. 1-6.
    [50] Z. Yang, T. Niu, and Q. Gao, “High switching frequency control scheme for dual- three-phase PMSM and simulation analysis,” in Proc. IEEE Transport. Electrific. Conf. Expo. Asia-Pacific (ITEC Asia-Pacific), Aug. 2017, pp. 1-6.
    [51] M. R. Barzegaran, M. Kamruzzaman, H. Mahmud, and O. A. Mohammed, “Direct torque control of permanent magnet synchronous machine using sparse matrix converter with SiC switches,” in Proc. IEEE Int. Electric Machines Drives Conf. (IEMDC), May 2015, pp. 1683-1688.
    [52] R. Togashi, Y. Inoue, S. Morimoto, and M. Sanada, “Performance improvement of ultra-high-speed PMSM drive system based on DTC by using SiC inverter,” in. Proc. Power Electron. Conf., May 2014, pp. 356-362.
    [53] B. Wu, High-Power Converters and AC Drives, 1st, A John Wiley & Sons, Inc., Publication, 2006, ch. 14.
    [54] M. Żelechowski, M. Sc., Space Vector Modulated-Direct Torque Controlled (DTC-SVM) Inverter-Fed Induction Motor Drive, Warsaw University of Technology, Faculty of Electrical Engineering, Ph.D. Thesis, 2005
    [55] 愛德利MA2 3700M馬達規格(2019, July) Available: https://www.adlee.com/zh-tw/product-552510/%E7%84%A1%E5%88%B7%E4%BC%BA%E6%9C%8D%E9%A6%AC%E9%81%94.html#ma2
    [56] 李毓彥,以微控器研製永磁同步馬達的向量控制驅動器,國立臺北科技大學電機工程系碩士論文,2009。
    [57] D. Y. Ohm, “Dynamic model of PM synchronous motors,” (2019, July) Available: www.drivetechinc.com.
    [58] ROHM, “SCT3060AL N-channel SiC power MOSFET”, Datasheet, Jun. 2018.
    [59] 羅聲喨,永磁同步馬達模型建立與控制,國立中央大學電機工程研究所在職專班碩士論文,2014。
    [60] 林晉葳,多輸出返馳式電源轉換器效率改善,國立高雄應用科技大學電機工程系碩士論文,2009。
    [61] Fairchild Semiconductor Corporation, “Design guidelines for off-line flyback converters using fairchild power switch”, Application Note AN4137, 2003.
    [62] ON Semiconductor, “UC3842A, UC3843A, UC2842A, UC2843A high performance current mode controllers”, Datasheet, Nov. 2005.
    [63] STMicroelectronics, “TLP072 low noise J-FET dual operational amplifiers”, Datasheet, March 2001.
    [64] LEM, “current transducer LA 55-P”, Datasheet, Sept. 2018.
    [65] Texas Instruments, “TMS320F2837xD Dual-Core Delfino™ Microcontrollers”, Datasheet, Nov. 2018.
    [66] 林揚傑,汽車電子模組EMC效應分析及改善技術,逢甲大學資訊電機工程碩士在職專班論文,2012。

    下載圖示 校內:2024-07-18公開
    校外:2024-07-18公開
    QR CODE