| 研究生: |
錢佳駒 Chien, Chia-Chu |
|---|---|
| 論文名稱: |
應用於全球定位系統前端之射頻晶片之研製 Research on RFICs for Receiver Front-end for GPS Application |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 射頻晶片 、全球定位系統 |
| 外文關鍵詞: | RFIC, GPS |
| 相關次數: | 點閱:61 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用互補式金氧半場效電晶體研究應用於全球定位系統接收機前端之射頻積體電路。一般而言,接收機大致上包含有放大器、混波器、震盪器及數位/類比轉換器等部分,而本論文主要著重在設計前端,即低雜訊放大器和混波器,而設計的晶片特色為可同時接收全球衛星定位系統之雙頻(L1、L5)訊號,本論文所研製的晶片均使用國家系統晶片中心提供之標準TSMC 0.18 製程,所有的晶片皆打鎊線至印刷電路板上進行量測。
在第一顆晶片中,設計包含有一雙頻低雜訊放大器及兩個雙頻混波器,低雜訊放大器採用兩級串接架構將訊號放大,而兩個雙頻混波器則採用雙端平衡式的架構,另外並做晶片的輸入與輸出匹配網路設計。
在第二顆晶片中,設計了一雙頻低雜訊放大器及一組同相/正交雙頻混波器,低雜訊放大器設計上採用疊接架構將訊號放大,之後則輸出至同相/正交雙頻混波器降頻,混波器主要採用單端平衡式的架構,本晶片另外還設計了一相移器,用以產生四相位的本地震盪頻率以提供同相/正交雙頻混波器使用。
This thesis presents the design and implementation of RFICs for receiver front end for GPS application. A GPS receiver relies on the case of amplifier, mixer, oscillators, A/D converter to provide digital IF data for signal acquisition, tracking, and navigation. This thesis focus on the design of the front end including the LNA (Low Noise Amplifier) and mixer. A distinctive of these chips is the circuits are designed dual frequency (L1, L5) GPS signals simultaneously. All of these chips to process are fabricated in TSMC standard 0.18 process. The measurements are performed on FR-4 test PCB with RFICs bounded.
The first chip includes one dual band LNA and two dual band mixers. The LNA uses cascade topology to amplify the signal and two mixers use double balanced topology. It also contains input/output matching networks. In contrast, the second chip includes one dual band LNA and one dual band I/Q mixer. The LNA uses cascade topology to amplify signal and I/Q mixers are use single balanced topology to downconvert signal. This chip also contains a phase shifter to generate four different phases’ LO signal to provide the I/Q mixers’ LO port.
[1] H. Hashemi and A. Hajimiri, “Concurrent Multiband Low-Noise Amplifiers-Theory, Design, and Applications,” IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 1, pp. 288-301, Jan. 2002.
[2] E. D. Kaplan and C. J. Hegarty, Understanding GPS Principles and Applications, Artech house, 2006.
[3] C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3-5-GHz UWB System,” IEEE J. of Solid-State Circuits, Vol. 39, No. 2, pp. 544-547, Feb. 2005.
[4] W. Kim, J. Yu, H. Shin, S. G. Yang, W. Choo, and B. H. Park, “A Dual-Band RF Front-End of Direct Conversion Receiver for Wireless CDMA Cellular Phones With GPS Capability,” IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, pp. 2098-2015, May 2006.
[5] J. Ko, J. Kim, S. Cho, and K. Lee, “A 19-mW 2.6-mm2 L1/L2 Dual-Band CMOS GPS Receiver,” IEEE J. of Solid-State Circuits, Vol. 40, No. 7, pp. 1414-1425, Jul. 2005.
[6] H. J. Lee, D. S. Ha and S. S. Choi, “A Systematic Approach to CMOS Low Noise Amplifier Design for Ultrawideband Applications,” IEEE International Symposium on Circuits and Systems, vol.4, pp.3962-3965, May 2005.
[7] T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
[8] Z. Li, R. Quintal, and Keeneth K. O., “A Dual-Band CMOS Front-End With Two Gain Modes for Wireless LAN Applications,” IEEE J. of Solid-State Circuits, Vol. 39, No. 11, pp. 2069-2073, Nov. 2004.
[9] Y. T. Lin and S. S. Lu, ”A 2.4/3.5/4.9/5.2/5.7-GHz Concurrent Multiband Low Noise Amplifier Using InGaP/GaAs HBT Technology,” IEEE Microwave and Wireless Compoments Letters, Vol. 14, No. 10, pp. 463-465, Oct. 2004.
[10] A. Liscidini, A. Mazzanti, R. Tonietto, L. Vandi, P. Andreani and R. Castello, “Single-Stage Low-Power Quadrature RF Receiver Front-End: The LMV Cell,” IEEE J. of Solid-State Circuits, Vol. 41, No. 12, pp. 2832-2841, Dec. 2006.
[11] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 1996.
[12] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[13] H. Sjöland, A. K. Sanjaani, and A. A. Abidi, “A merged CMOS LNA and Mixer for a WCDMA Receiver,” IEEE J. of Solid-State Circuits, Vol. 38, No. 6, pp. 1045-1050, Jun. 2003.
[14] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. of Solid-State Circuits, Vol. 32, No. 5, pp. 745-759, May 1997.
[15] Y. Tsividis, Operation and Modeling of the MOS Transistor, Second Ed., Boston: McGraw-Hill, 1999.
[16] P. Vizmulleri, RF Design Guide: Systems, Circuits and Equations, Artech House, 1995.
[17] 王鴻耀,UWB低電壓低雜訊放大器及摺疊式與次諧波式混頻器之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
[18] 邱永明,應用於2.4及5.7GHz 802.11 WLAN之CMOS單晶射頻電路,國立成功大學電機工程學系碩士論文,民國九十二年。
[19] 莊智清、黃國興,電子導航,全華科技圖書,民國九十年。
[20] 黃大容,應用於2.4/5.7-GHz雙頻WLAN射頻收發機之系統規劃及RF CMOS晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十五年。
[21] 黃秋皇,應用於IEEE 802.11b/g無線區域網路之2.4GHz CMOS射頻接收機,國立成功大學電機工程研究所碩士論文,民國九十二年。
[22] 魯齊媛,應用於TDOA無線定位系統發射機之射頻晶片(RFIC)的研製,國立成功大學電機工程研究所碩士論文,民國九十六年。