簡易檢索 / 詳目顯示

研究生: 謝翔宇
Hsieh, Hsiang-Yu
論文名稱: 應用改良型黏菌優化演算法於分散式電源裝設位置及容量擇定之規劃研究
Application of Improved Slime Mould Algorithm to Placement Decision and Sizing Selection of Distributed Power Resources
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 78
中文關鍵詞: 分散式系統改良型黏菌優化演算法線路損失電壓偏差率電壓變動率
外文關鍵詞: distributed power resources, improved slime mould algorithm, line loss, voltage deviation rate, voltage variation rate
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 1 第一章 緒論 1 1-1 研究動機與文獻探討 1 1-2 研究方法與步驟敘述 3 1-3 論文各章重點簡述 5 2 第二章 問題描述 6 2-1 前言 6 2-2 分散式電源併網影響 7 2-3 分散式電源裝設位置及容量規劃 8 2-3-1 目標函數之建立 8 2-3-2 系統運轉限制式之建立 11 2-4 本章結論 12 3 第三章 改良型黏菌優化演算法 13 3-1 前言 13 3-2 黏菌優化演算法探討及數學建模 13 3-3 黏菌優化演算法之計算流程 20 3-4 改良型黏菌優化演算法之模型建立 24 3-5 本章結論 28 4 第四章 研究模擬結果探討 29 4-1 前言 29 4-2 演算法參數設定 29 4-2-1 25個匯流排配電系統介紹 30 4-2-2 黏菌族群數量(N)之探討 32 4-3 模擬結果測試及分析 34 4-3-1 包含25個匯流排配電系統之模擬結果分析 34 4-3-2 考量不同負載曲線之模擬結果分析 42 4-3-3 考量增加分散式電源滲透率及電動車負載之模擬結果分析 49 4-4 本章結論 57 5 第五章 結論及未來研究方向 58 5-1 結論 58 5-2 未來研究方向 59 參考文獻 60

    [1] S. Das, O. B. Fosso, and G. Marafioti, “Probabilistic Planning of Distribution Networks with Optimal DG Placement Under Uncertainties,”IEEE Transactions on Industry Applications, vol. 59, no. 3, pp. 2731-2741, May-June 2023.
    [2] H. Wu, P. Dong, and M. Liu,“Distribution Network Reconfiguration for Loss Reduction and Voltage Stability with Random Fuzzy Uncertainties of Renewable Energy Generation and Load,”IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 5655-5666, September 2020.
    [3] M. Purlu and B. E. Turkay, “Optimal Allocation of Renewable Distributed Generations Using Heuristic Methods to Minimize Annual Energy Losses and Voltage Deviation Index,” IEEE Access, vol. 10, pp. 21455-21474, February 2022.
    [4] S. Camal, A. Michiorri, and G. Kariniotakis, “Reliable Provision of Ancillary Services from Aggregated Variable Renewable Energy Sources Through Forecasting of Extreme Quantiles,” IEEE Transactions on Power Systems, vol. 38, no. 4, pp. 3070-3084, July 2023.
    [5] M. Mahdavi, K. E. K. Schmitt, M. Chamana, and S. Bayne,“Evaluation of Voltage Fluctuations Effect on Reconfiguration of Distribution Systems,”IEEE Systems Journal, vol. 18, no. 1, pp. 198-209, March 2024.
    [6] N. Mohan, S. S. Kumar, K. P. Soman, V. G. Sujadevi, P. Poornachandran, and U. R. Acharya, “A Data-Driven Hybrid Methodology Using Randomized Low-Rank DMD Approximation and Flat-Top FIR Filter for Voltage Fluctuations Monitoring in Grid-Connected Distributed Generation Systems,” IEEE Access, vol. 11, pp. 39228-39242, April 2023.
    [7] V. Lakshmi Srinivas, B. Singh, S. Mishra, and L. Xu, “Harmonic Voltage Control in Distributed Generation Systems Using Optimal Switching Vector Strategy,”IEEE Systems Journal, vol. 16, no. 2, pp. 1861-1872, June 2022.
    [8] S. Das and B. Singh, “Multi-Objective Control Strategy for Power Quality Improvement in Wind-Solar Distributed Generation System Under Harmonically Distorted Grid,”IEEE Transactions on Industry Applications, vol. 58, no. 5, pp. 5697-5710, September-October 2022.
    [9] J. P. Holguin, D. C. Rodriguez, and G. Ramos, “Reverse Power Flow (RPF) Detection and Impact on Protection Coordination of Distribution Systems,”IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2393-2401, May-June 2020.
    [10] I. B. Majeed and N. I. Nwulu, “Reverse Power Flow Due to Solar Photovoltaic in the Low Voltage Network,”IEEE Access, vol. 11, pp. 44741-44758, May 2023.
    [11] M. Bazrafshan, N. Gatsis, and E. Dall’Anese, “Placement and Sizing of Inverter-Based Renewable Systems in Multi-Phase Distribution Networks,”IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 918-930, March 2019.
    [12] A. Raza, M. Zahid, J. Chen, S. M. Qaisar, T. Ilahi, A. Waqar, and A. Alzahrani, “A Novel Integration Technique for Optimal Location & Sizing of DG Units with Reconfiguration in Radial Distribution Networks Considering Reliability,” IEEE Access, vol. 11, pp. 123610-123624, November 2023.
    [13] M. I. Akbar, S. A. A. Kazmi, O. Alrumayh, Z. A. Khan, A. Altamimi, and M. M. Malik, “A Novel Hybrid Optimization-Based Algorithm for the Single and Multi-Objective Achievement with Optimal DG Allocations in Distribution Networks,” IEEE Access, vol. 10, pp. 25669-25687, February 2022.
    [14] D. Ćetković and V. Komen, “Optimal Distributed Generation and Capacitor Bank Allocation and Sizing at Two Voltage Levels,” IEEE Systems Journal, vol. 17, no. 4, pp. 5831-5841, December 2023.
    [15] M. Purlu and B. E. Turkay, “Optimal Allocation of Renewable Distributed Generations Using Heuristic Methods to Minimize Annual Energy Losses and Voltage Deviation Index,” IEEE Access, vol. 10, pp. 21455-21474, February 2022.
    [16] S. Maity, S. Paul, H. Karbouj, and Z. H. Rather, “Optimal Sizing and Placement of Wind Farm in a Radial Distribution Network Considering Reliability, Operational, Economic and Environmental Factors,” IEEE Transactions on Power Delivery, vol. 36, no. 5, pp. 3043-3054, October 2021.
    [17] A. A. A. El-Ela, R. A. El-Sehiemy, and A. S. Abbas, “Optimal Placement and Sizing of Distributed Generation and Capacitor Banks in Distribution Systems Using Water Cycle Algorithm,” IEEE Systems Journal, vol. 12, no. 4, pp. 3629-3636, December 2018.
    [18] M. Bilal, M. Rizwan, I. Alsaidan, and F. M. Almasoudi, “AI-Based Approach for Optimal Placement of EVCS and DG with Reliability Analysis,” IEEE Access, vol. 9, pp. 154204-154224, November 2021.
    [19] G. H. Reddy, S. R. Depuru, S. Gope, B. V. Narayana, and M. N. Bhukya, “Simultaneous Placement of Multiple Rooftop Solar PV Integrated Electric Vehicle Charging Stations for Reliability Benefits,” IEEE Access, vol. 11, pp. 130788-130801, November 2023.
    [20] P. Asaah, L. Hao, and J. Ji, “Optimal Placement of Wind Turbines in Wind Farm Layout Using Particle Swarm Optimization,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 2, pp. 367-375, March 2021.
    [21] M. Shadman Abid, H. J. Apon, K. A. Morshed, and A. Ahmed, “Optimal Planning of Multiple Renewable Energy-Integrated Distribution System with Uncertainties Using Artificial Hummingbird Algorithm,” IEEE Access, vol. 10, pp. 40716-40730, April 2022.
    [22] A. Waqar, U. Subramaniam, K. Farzana, R. M. Elavarasan, H. U. R. Habib, M. Zahid, and E. Hossain, “Analysis of Optimal Deployment of Several DGs in Distribution Networks Using Plant Propagation Algorithm,” IEEE Access, vol. 8, pp. 175546-175562, September 2020.
    [23] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, “Slime Mould Algorithm: A New Method for Stochastic Optimization,” SIAM Journal on Future Generation Computer Systems, vol. 111, pp. 300-323, October 2020.
    [24] G. S. Rani, S. Jayan, and B. Alatas, “Analysis of Chaotic Maps for Global Optimization and a Hybrid Chaotic Pattern Search Algorithm for Optimizing the Reliability of a Bank,” IEEE Access, vol. 11, pp. 24497-24510, March 2023.
    [25] Z. Xu, H. Yang, J. Li, X. Zhang, B. Lu, and S. Gao, “Comparative Study on Single and Multiple Chaotic Maps Incorporated Grey Wolf Optimization Algorithms,” IEEE Access, vol. 9, pp. 77416-77437, May 2021.
    [26] M. Verma, M. Sreejeth, M. Singh, T. S. Babu, and H. H. Alhelou, “Chaotic Mapping Based Advanced Aquila Optimizer with Single Stage Evolutionary Algorithm,” IEEE Access, vol. 10, pp. 89153-89169, August 2022.
    [27] R. I. Abdelfatah, E. A. Baka, and M. E. Nasr, “Keyed Parallel Hash Algorithm Based on Multiple Chaotic Maps (KPHA-MCM),” IEEE Access, vol. 9, pp. 130399-130409, September 2021.
    [28] T. Si, P. B. C. Miranda, U. Nandi, N. D. Jana, S. Mallik, U. Maulik, and H. Qin, “Opposition-Based Chaotic Tunicate Swarm Algorithms for Global Optimization,” IEEE Access, vol. 12, pp. 18168-18188, January 2024.
    [29] R. Sihwail, K. Omar, K. A. Z. Ariffin, and M. Tubishat, “Improved Harris Hawks Optimization Using Elite Opposition-Based Learning and Novel Search Mechanism for Feature Selection,” IEEE Access, vol. 8, pp. 121127-121145, July 2020.
    [30] A. B. Nasser, K. Z. Zamli, F. Hujainah, W. A. H. M. Ghanem, A. -M. H. Y. Saad, and N. A. M. Alduais, “An Adaptive Opposition-Based Learning Selection: The Case for Jaya Algorithm,” IEEE Access, vol. 9, pp. 55581-55594, January 2021.
    [31] 台灣電力公司「再生能源發電系統併聯技術要點」,2023年8月

    無法下載圖示 校內:2029-07-09公開
    校外:2029-07-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE