簡易檢索 / 詳目顯示

研究生: 林冠嫻
Lin, Kuan-Hsien
論文名稱: 交通號誌與車輛資料傳輸平台之實作與效能分析
Implementation and Performance Analysis of Data Transmission Platform for Traffic Signal System and Vehicles
指導教授: 陳文字
Chen, Wen-Tzu
學位類別: 碩士
Master
系所名稱: 管理學院 - 電信管理研究所
Institute of Telecommunications Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 車聯網效能分析交通號誌系統樹莓派
外文關鍵詞: Vehicle-to-Everything (V2X), Performance Analysis, Traffic Signal System, Raspberry Pi
相關次數: 點閱:162下載:49
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人類需求改變與追求便利性的時代來臨,各國政府及企業無不投入資金和人才,打造可提高效率的創新應用。其中,又以智慧交通最具市場規模及成長潛力,使得運輸科技受到政府及企業兩者大力推動,車聯網便是重要發展產業之一。
    車聯網(Vehicle-of-everything, V2X),意旨透過無線網路技術,讓車輛連上網際網路,與車輛(V2V)、基礎建設(V2I)、行人(V2P)或網路(V2N)進行資料雙向傳輸。過往車聯網主要採用以IEEE 802.11p為基礎的DSRC(Dedicated Short Range Communications)無線技術,然而DSRC的特性並不適合大規模、大容量的車聯網應用,故各國逐漸轉向以蜂巢式網路為主的C-V2X(Cellular V2X)。根據3GPP的技術規格指出,採用4G LTE技術之車聯網服務的延遲標準為1,000毫秒,採用5G NR技術更是提升到100毫秒,顯示低延遲特性對車聯網產業應用的重要性。
    是故,為了瞭解現有系統是否符合國際標準組織對車聯網服務品質之要求,本研究結合第四代樹莓派(Raspberry Pi 4)、車載診斷系統(On-Board Diagnostics)、4G行動網路介面卡、交通號誌資料庫等,建立一個車網通訊系統(Vehicle-to-network, V2N)測試平台,在此平台上,車輛端除了可以與交通號誌資料庫連線,取得附近路網的交通號誌之即時資料之外,還能將自身車輛資訊上傳至資料庫或雲端,供個人或相關單位使用。隨後,本研究即針對整個測試平台──也就是車輛端到虛擬交控中心這段範圍──進行網路傳輸效能實測,研究結果不僅顯示本研究測試平台的網路傳輸效能符合3GPP對車聯網服務品質之要求,亦發現網路流量、路由器的數量多寡與壅塞程度等因子會影響網路傳輸效能表現。
    本研究希冀透過分析車網通訊測試平台的傳輸效能,給予政府單位、事業單位、非營利組織等團體些許方向參考,未來在開發車聯網或智慧運輸相關應用時,欲達網路傳輸效能最佳化,可以將硬體網路架構配置納入系統設計的因素之一。

    With the challenge for people's changing needs and pursuing convenience, governments and industries around the world have been investing heavily in innovative systems that can improve the quality of life. Smart transportation system is a key innovative system, as well as a type of fundamental infrastructure with large market scale and great growth potential, which attracting much attention of both public and private sectors. In smart transportation system, V2X (Vehicle-to-Everything) is seen as one of the most important applications. The V2X is a vehicular communication technology that supports the transmission of information from a vehicle to all nearby cars or road-side units. In fact, the V2X technology is derived from IEEE 802.11p, which is a global standard, as well as a kind of WLAN (wireless local area network) technologies.
    A new technology, C-V2X (Cellular-V2X), is an alternative to IEEE 802.11p and uses LTE (long term evolution). Apart from direct communication, C-V2X allows devices to use vehicle-to-network (V2N) communication. A global and key standard, 3GPP TS 22.185, stated that an application server should support V2N application with a requirement of end-to-end delay less than 1,000 ms. This research attempts to establish a V2N-based platform by integrating Raspberry Pi 4, OBD-II (On-Board Diagnostics), virtual traffic control center, cloud, and 4G dongle. On this platform, the vehicle can connect to the traffic signal database and obtain information about traffic signals nearby. Also, it can upload its own vehicle information to the database or the cloud for further applications accessed by stakeholders or related organizations. Subsequently, this study conducts a measurement for packet delay according to the NCC (national communications and commission) regulation. We ping 100 packets with 1024 bytes from RPi-V (Raspberry Pi-Vehicle) to the virtual traffic control center and calculate average packet delay.
    The research found that 1) the network transmission performance of the proposed platform meets the requirements for V2X services according to the 3GPP specification, 2) data traffic, the number of routers, and the degree of congestion can affect network transmission performance. In summary, it is essential for government, business or non-profitable organizations to take network architecture into account to improve network transmission performance, while developing the ITS applications in the future.

    表目錄 IX 圖目錄 X 第一章 緒論 1 1.1.  研究背景與動機 1 1.2.  研究目的 6 1.3.  論文架構 7 第二章 背景回顧與文獻探討 8 2.1.  背景回顧 8  2.1.1  車聯網(V2X) 8  2.1.2  車載診斷系統(OBD) 10 2.2.  文獻探討 11  2.2.1  車聯網相關文獻 11  2.2.2  實作車聯網應用與分析效能之相關文獻 15 2.3.  小結 17 第三章 研究架構 18 3.1.  系統與情境架構 18  3.1.1  研究系統架構 18  3.1.2  系統規格 19  3.1.3  研究情境設定 20 3.2.  軟硬體配置 22  3.2.1  硬體配置 22  3.2.2  軟體配置 26  3.2.3  OBD-II系統 29 3.3.  網路傳輸效能之項目選定 30 第四章 研究成果 32 4.1.  實驗車輛規格 34 4.2.  資料庫端與車輛端之環境與資料儲存 35  4.2.1  交通號誌資料庫端(RPi-TS) 35  4.2.2  車輛端(RPi-V) 37  4.2.3  私人資料庫端(RPi-P) 41 4.3.  圖形使用者介面(GUI) 43  4.3.1  登入或登出資料庫 43  4.3.2  檢視或上傳行車資料 44  4.3.3  查看交通號誌的即時資訊 46  4.3.4  讀取即時行車原始資料 49 4.4.  網路傳輸效能 50  4.4.1  延遲時間(Delay) 52  4.4.2  封包遺失率(Packet Loss) 55 4.5.  研究成果探討 57  4.5.1  交通號誌之資訊 57  4.5.2  行車監控項目選定 58  4.5.3  網路傳輸效能結果分析 59 第五章 結論 61 5.1.  結論 61 5.2  未來研究建議 62 參考文獻 63 附錄一:OBD-II PIDs [37] 66

    [1] CB Insights. (2019, Jan. 9). What Are Smart Cities[Online]? Available: https://www.cbinsights.com/research/what-are-smart-cities/
    [2] 陳嘉茹(民108年)。智慧交通發展趨勢與技術方向。取自https://reurl.cc/q8YMlq
    [3] H. F. Azgomi and M. Jamshidi, "A brief survey on smart community and smart transportation," in 2018 IEEE 30th International Conf. on Tools with Artificial Intelligence, Volos, Greece, 2018, pp. 932-939.
    [4] Tieto and EVRY. (2019, Nov. 18). City of Tampere and Tieto develop AI-IoT test solution for pedestrian traffic safety[Online]. Available: https://reurl.cc/D6OWV6
    [5] FCC. (2020, Nov. 20). FCC Modernizes 5.9 GHz Band to Improve Wi-Fi and Automotive Safety[Online]. Available: https://reurl.cc/V3G76y
    [6] National Instruments(NI). (2020, Sep. 1). Controller Area Network (CAN) Overview[Online]. Available: http://www.ni.com/white-paper/2732/
    [7] 數位時代(民109年6月11日)。DSRC與C-V2X車聯網技術比較。取自ttps://reurl.cc/WLOp2y
    [8] 王玉喆、蘇子翔、蔡嘉泰(民105年11月3日)。LTE V2X車間通訊服務與系統架構。電腦與通訊特刊。取自https://reurl.cc/q8YMln
    [9] Noregon. (n.d.). What Does OBD Stand For[Online]? Available: https://www.noregon.com/what-is-obd/
    [10] Road vehicles – Diagnostic communication over Controller Area Network (DoCAN), ISO 15765-4, 2016.
    [11] E. D. Spyrou, K. Skoufas and D. Mitrakos, "IoT System Design of a V2X Application," in Business Modeling and Software Design, Cham, Switzerland, 2020, pp. 320–330.
    [12] S. Chen et al., "Vehicle-to-Everything (v2x) Services Supported by LTE-Based Systems and 5G," IEEE Communications Standards Mag., vol. 1, no. 2, pp. 70-76, 2017.
    [13] G. Araniti et al., "LTE for vehicular networking: a survey," IEEE Communications Mag., vol. 51, no. 5, pp. 148-157, May 2013.
    [14] H. Seo et al., "LTE evolution for vehicle-to-everything services," IEEE Communications Mag., vol. 54, no. 6 , June 2016.
    [15] Amendment 6: Wireless Access in Vehicular Environments, IEEE 802.11p, 2010.
    [16] M. Amadeo, C. Campolo and A. Molinaro, "Enhancing IEEE 802.11p/WAVE to Provide Infotainment Applications in VANETs", Ad Hoc Networks, vol. 10, no. 2, pp. 253-269, Mar 2012.
    [17] S. H. Sun et al., "Support for vehicle-to-everything services based on LTE," IEEE Wireless Commun., vol. 23, no. 3, pp. 4-8, June 2016.
    [18] S. Chen, "Technical Innovations Promoting Standard Evolution: From TD-SCDMA to TD-LTE and Beyond", IEEE Wireless Commun., vol. 19, no. 1, pp. 60-66, Feb. 2013.
    [19] New WI Proposal: Support for V2V Services based on LTE Sidelink, RP‑152293, Dec 2015.
    [20] Service requirements for V2X services, 3GPP TS 22.185, July 2020.
    [21] Enhancement of 3GPP support for V2X scenarios, 3GPP TS 22.186, June 2019.
    [22] L. Chen and C. Englund, "Cooperative Intersection Management: A Survey," IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2 , pp.570-586, Feb 2016.
    [23] 道路交通安全督導委員會(民109年9月1日)。行人路口事故平均每日24件,今日(9/1)起加強全國「路口安全大執法」【交通新聞稿】。臺北市:交通部。取自https://reurl.cc/zz5mda
    [24] IEEE Guide for Wireless Access in Vehicular Environments (WAVE)—Architecture, IEEE 1609.0-2019, Feb 2019.
    [25] A. A. Salunkhe, P. P. Kamble and R. Jadhav, "Design and implementation of CAN Bus protocol for monitoring vehicle parameters," in 2016 IEEE International Conf. on Recent Trends in Electronics, Information & Communication Technology, Bangalore, India, 2016, pp. 301-304.
    [26] S. Tayeb, M. Pirouz and S. Latifi, "A Raspberry-Pi Prototype of Smart Transportation," in 2017 25th International Conf. on Systems Engineering, Las Vegas, NV, 2017, pp. 176-182.
    [27] S. R. Manalu et al., "OBD-II and raspberry Pi technology to diagnose car’s machine current condition: study literature," Library Hi Tech News, vol. 34, no. 10, pp. 15-21, 2017.
    [28] 陳子軒。「以軟體定義無線電技術及樹莓派實作動態及即時車間通訊系統」。碩士論文,國立成功大學電信管理研究所,2019。
    [29] 黃棋宏。「以軟體定義無線電實作車間與路側裝置之無線通訊系統」。碩士論文,國立成功大學電信管理研究所,2019。
    [30] A. BinMasoud and Q. Cheng, "Design of an IoT-based Vehicle State Monitoring System Using Raspberry Pi," in 2019 International Conf. on Electrical Engineering Research & Practice, Sydney, Australia, 2019, pp. 1-6.
    [31] 陳育旋。「IEEE 802.15.4協定下能量收集無線感測網路之效能分析」。碩士論文,國立臺灣大學資訊工程學研究所,2016。
    [32] 林子傑。「基於 IEEE 802.15.4 協定下實作無線多媒體感測網路之影像傳輸與效能分析」。碩士論文,國立臺中教育大學資訊工程學系,2017。
    [33] M. Noor-A-Rahim, G. G. M. N. Ali, H. Nguyen and Y. L. Guan, "Performance Analysis of IEEE 802.11p Safety Message Broadcast With and Without Relaying at Road Intersection," IEEE Access, vol. 6, pp. 23786-23799, 2018.
    [34] 邱柏睿。「路口防撞系統基於車間無線通訊之效能評估」。碩士論文,國立臺灣大學資訊工程學研究所,2013。
    [35] Diagnostic Connector, SAE J1962_201607, July 2016.
    [36] Road vehicles — Communication between vehicle and external equipment for emissions-related diagnostics, ISO 15031-7:2013, 2013.
    [37] E/E Diagnostic Test Modes, SAE J1979_201702, February 2017.
    [38] Copperhilltech. (n.d.). A Brief Introduction to Controller Area Network[Online]. Available: https://copperhilltech.com/a-brief-introduction-to-controller-area-network
    [39] Robert Bosch GmbH, "CAN Specification", D-7000 Stuttgart 1 [Online], 1991. Available: http://esd.cs.ucr.edu/webres/can20.pdf
    [40] H. Zhang et al., "CANsec: A Practical in-Vehicle Controller Area Network Security Evaluation Tool," Sensors, vol. 20, no. 17, Aug 2020.
    [41] 國家通訊傳播委員會(民 109 年 4 月 23 日)。行動寬頻系統審驗技術規範。取自https://www.ncc.gov.tw/chinese/files/20042/3601_2792_200421_4.pdf

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE