| 研究生: |
江典翰 Chiang, Dien-Han |
|---|---|
| 論文名稱: |
比較尺寸排除層析儀串聯感應耦合電漿質譜方法與單顆粒式感應耦合電漿質譜方法用於鑑定水環境介質中之二氧化矽奈米顆粒 Characterization of SiO2 Nanoparticles in Aqueous Environmental Matrices using Size Exclusion Chromatography ICP-MS versus Single Particle-ICP-MS |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 尺寸排除層析儀串聯感應耦合電漿質譜方法 、單顆粒式感應耦合電漿質譜方法 、二氧化矽奈米顆粒 、十二烷基硫酸鈉 、FL-70 、科技園區廢水樣本 、流洗液 |
| 外文關鍵詞: | SEC-ICP-MS, spICP-MS, SiO2 nanoparticles, Sodium dodecyl sulfate, FL-70, raw wastewater, eluent |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工程奈米材料被大量生產並應用於消費品和食品。許多工業處理程序,例如半導體製程中的化學機械平坦化也涉及工程奈米材料的使用。二氧化矽奈米顆粒是最常用的工程奈米材料之一。因此,需要建立一套方法來鑑定水環境中的二氧化矽奈米顆粒的尺寸分佈及質量濃度,以評估二氧化矽奈米顆粒相關產品在其生命週期中釋放到環境的潛在暴露風險。
本研究中,我們比較尺寸排除層析儀串聯感應耦合電漿質譜方法與單顆粒式感應耦合電漿質譜方法用於鑑定水環境介質中之二氧化矽奈米顆粒,結果表明單顆粒式感應耦合電漿質譜方法無法分析50 nm二氧化矽奈米顆粒的尺寸,這要歸因於多元子干擾物的大量訊號(28氮氣)導致奈米顆粒的訊號被隱藏在背景訊號之下。相比之下,尺寸排除層析儀串聯感應耦合電漿質譜方法可以容易的分析到二氧化矽奈米顆粒的尺寸大小。與單顆粒式感應耦合電漿質譜方法不同,顆粒表徵的功能發生在尺寸排除層析儀中。本研究使用多種流洗液,十二烷基硫酸鈉(10 Mm、pH = 11)作為流洗液,可以得到較好的質量回收率;FL-70(2% (v/v)、pH = 11)作為流洗液,則可以得到良好的尺寸分離效果。後續使用十二烷基硫酸鈉作為流洗液,我們成功使用尺寸排除層析儀串聯感應耦合電漿質譜方法與流體動力層析儀串聯感應耦合電漿質譜方法建立奈米金顆粒尺寸(20-100 nm)與停留時間的關係,並使用此關係成功分析二氧化矽奈米顆粒的尺寸(20, 50, 80 nm)。使用尺寸排除層析儀串聯感應耦合電漿質譜方法對於二氧化矽奈米顆粒的質量偵測極限落在0.8 mg/L。最後,我們使用尺寸排除層析儀的方法鑑定科學園區中廢水樣本裡的二氧化矽奈米顆粒,結果表明因為分析矽的背景強度仍然太高而導致無法偵測到矽相關的奈米顆粒。雖然仍需要進行更多的改進,但研究中結果表明,尺寸排除層析儀串聯感應耦合電漿質譜方法用於鑑定水環境介質中之二氧化矽奈米顆粒是有前景的方法。
A large variety of engineered nanomaterials (ENMs) are produced and applied in the manufacturing of consumer and food products. Many industrial processes, such as chemical mechanical planarization (CMP) in semiconductor manufacturing also involves the use of ENMs. Silica nanoparticles (SiO2NPs) are arguably one of the most commonly used ENMs. Therefore, there is a need to establish a method to characterize the size distribution and the mass concentration of SiO2NPs in aqueous environments to evaluate their potential exposure when they are released into the environment during the life cycle of SiO2NPs-enabled products and processes.
In this study, we compared two methods, namely, size exclusion chromatography (SEC) hyphenated to inductively coupled plasma mass spectrometry (ICP-MS) and single particle-ICP-MS (spICP-MS), in the characterization of SiO2NPs in aqueous environment. The results of the study show that spICP-MS could not size nanoscale SiO2NPs, such as 50 nm SiO2. This can be attributed to the strong polyatomic interferences (e.g., 28N2+), resulting in strong background that masks the particle events. In comparison, SEC-ICP-MS could readily size SiO2NPs, as the size characterization mainly occurs on the SEC column, a principle distinct from spICP-MS. In this study, we used various eluents, 10 mM sodium dodecyl sulfate (SDS) at pH = 11 as an eluent had better mass recovery; 2% FL-70 at pH = 11 as an eluent had better size separation performance. We used SDS as our subsequent eluent and successfully established the size-retention time relationship (i.e., size calibration curve) using 20-100 nm well-characterized AuNPs with SEC-ICP-MS and hydrodynamic chromatography-ICP-MS (HDC-ICP-MS). The methods were successfully used to characterize SiO2NPs with sizes of 20 nm, 50 nm, and 80 nm. The mass detection of SEC-ICP-MS was currently limited to 0.8 mg/L. Lastly, the SEC-ICP-MS method was used to characterize SiO2NPs in the wastewater sample from a science park. The result indicates no detectable Si NPs, likely limited by the still high Si mass detection limit of the method. While more improvements need to be done, our result indicate that SEC-ICP-MS is a promising method to size SiO2NPs in the aqueous environments.
(1) Farré, M.; Sanchís, J.; Barceló, D. Analysis and Assessment of the Occurrence, the Fate and the Behavior of Nanomaterials in the Environment. TrAC Trends Anal. Chem. 2011, 30 (3), 517–527.
(2) Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ. Sci. Technol. 2012, 46 (4), 2242–2250.
(3) Bondarenko, O. M.; Heinlaan, M.; Sihtmäe, M.; Ivask, A.; Kurvet, I.; Joonas, E.; Jemec, A.; Mannerström, M.; Heinonen, T.; Rekulapelly, R.; et al. Multilaboratory Evaluation of 15 Bioassays for (Eco)Toxicity Screening and Hazard Ranking of Engineered Nanomaterials: FP7 Project NANOVALID. Nanotoxicology 2016, 10 (9), 1229–1242.
(4) Keller, A. A.; McFerran, S.; Lazareva, A.; Suh, S. Global Life Cycle Releases of Engineered Nanomaterials. J. Nanoparticle Res. 2013, 15 (6), 1692.
(5) Speed, D.; Westerhoff, P.; Sierra-Alvarez, R.; Draper, R.; Pantano, P.; Aravamudhan, S.; Chen, K. L.; Hristovski, K.; Herckes, P.; Bi, X.; et al. Physical, Chemical, and in Vitro Toxicological Characterization of Nanoparticles in Chemical Mechanical Planarization Suspensions Used in the Semiconductor Industry: Towards Environmental Health and Safety Assessments. Environ. Sci. Nano 2015, 2 (3), 227–244.
(6) Zazzera, L.; Mader, B.; Ellefson, M.; Eldridge, J.; Loper, S.; Zabasajja, J.; Qian, J. Comparison of Ceria Nanoparticle Concentrations in Effluent from Chemical Mechanical Polishing of Silicon Dioxide. Environ. Sci. Technol. 2014, 48 (22), 13427–13433.
(7) Kammer, F. von der; Ferguson, P. L.; Holden, P. A.; Masion, A.; Rogers, K. R.; Klaine, S. J.; Koelmans, A. A.; Horne, N.; Unrine, J. M. Analysis of Engineered Nanomaterials in Complex Matrices (Environment and Biota): General Considerations and Conceptual Case Studies. Environ. Toxicol. Chem. 31 (1), 32–49.
(8) Yang, Y.; Long, C.-L.; Li, H.-P.; Wang, Q.; Yang, Z.-G. Analysis of Silver and Gold Nanoparticles in Environmental Water Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Sci. Total Environ. 2016, 563–564, 996–1007.
(9) Montaño, M. D.; Majestic, B. J.; Jämting, Å. K.; Westerhoff, P.; Ranville, J. F. Methods for the Detection and Characterization of Silica Colloids by Microsecond SpICP-MS. Anal. Chem. 2016, 88 (9), 4733–4741.
(10) Mitrano, D. M.; Ranville, J. F.; Bednar, A.; Kazor, K.; Hering, A. S.; Higgins, C. P. Tracking Dissolution of Silver Nanoparticles at Environmentally Relevant Concentrations in Laboratory, Natural, and Processed Waters Using Single Particle ICP-MS (SpICP-MS). Environ. Sci. Nano 2014, 1 (3), 248–259.
(11) Laborda, F.; Jiménez-Lamana, J.; Bolea, E.; Castillo, J. R. Critical Considerations for the Determination of Nanoparticle Number Concentrations, Size and Number Size Distributions by Single Particle ICP-MS. J. Anal. At. Spectrom. 2013, 28 (8), 1220–1232.
(12) Laborda, F.; Jiménez-Lamana, J.; Bolea, E.; Castillo, J. R. Selective Identification, Characterization and Determination of Dissolved Silver(I) and Silver Nanoparticles Based on Single Particle Detection by Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2011, 26 (7), 1362–1371.
(13) Laborda, F.; Bolea, E.; Jiménez-Lamana, J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 2014, 86 (5), 2270–2278.
(14) Kawabata, K.; Kishi, Y.; Thomas, R. Dynamic Reaction Cell ICPMS for Trace Metal Analysis of Semiconductor Materials. Anal. Chem. 2003, 75 (19), 422 A-428 A.
(15) Barahona, F.; Geiss, O.; Urbán, P.; Ojea-Jimenez, I.; Gilliland, D.; Barrero-Moreno, J. Simultaneous Determination of Size and Quantification of Silica Nanoparticles by Asymmetric Flow Field-Flow Fractionation Coupled to ICPMS Using Silica Nanoparticles Standards. Anal. Chem. 2015, 87 (5), 3039–3047.
(16) Liu, H.; Jiang, S.-J. Dynamic Reaction Cell Inductively Coupled Plasma Mass Spectrometry for Determination of Silicon in Steel. Spectrochim. Acta Part B At. Spectrosc. 2003, 58 (1), 153–157.
(17) Bolea-Fernandez, E.; Leite, D.; Rua-Ibarz, A.; Balcaen, L.; Aramendía, M.; Resano, M.; Vanhaecke, F. Characterization of SiO 2 Nanoparticles by Single Particle-Inductively Coupled Plasma-Tandem Mass Spectrometry (SP-ICP-MS/MS). J. Anal. At. Spectrom. 2017, 32 (11), 2140–2152.
(18) Amais, R. S.; Amaral, C. D. B.; Fialho, L. L.; Schiavo, D.; Nóbrega, J. A. Determination of P, S and Si in Biodiesel, Diesel and Lubricating Oil Using ICP-MS/MS. Anal Methods 2014, 6 (13), 4516–4520.
(19) Zhou, X.; Liu, J.; Jiang, G. Elemental Mass Size Distribution for Characterization, Quantification and Identification of Trace Nanoparticles in Serum and Environmental Waters. Environ. Sci. Technol. 2017, 51 (7), 3892–3901.
(20) Pitkänen, L.; Montoro Bustos, A. R.; Murphy, K. E.; Winchester, M. R.; Striegel, A. M. Quantitative Characterization of Gold Nanoparticles by Size-Exclusion and Hydrodynamic Chromatography, Coupled to Inductively Coupled Plasma Mass Spectrometry and Quasi-Elastic Light Scattering. J. Chromatogr. A 2017, 1511, 59–67.
(21) Guor-Tzo Wei; Liu, F.-K. Separation of Nanometer Gold Particles by Size Exclusion Chromatography. J. Chromatogr. A 1999, 836 (2), 253–260.
(22) Pitkänen, L.; Striegel, A. M. Size-Exclusion Chromatography of Metal Nanoparticles and Quantum Dots. TrAC Trends Anal. Chem. 2016, 80, 311–320.
(23) Siebrands, T.; Giersig, M.; Mulvaney, P.; Fischer, C. H. Steric Exclusion Chromatography of Nanometer-Sized Gold Particles. Langmuir 1993, 9 (9), 2297–2300.
(24) Proulx, K.; Hadioui, M.; Wilkinson, K. J. Separation, Detection and Characterization of Nanomaterials in Municipal Wastewaters Using Hydrodynamic Chromatography Coupled to ICPMS and Single Particle ICPMS. Anal. Bioanal. Chem. 2016, 408 (19), 5147–5155.
(25) Tiede, K.; A. Boxall, A. B.; Tiede, D.; P. Tear, S.; David, H.; Lewis, J. A Robust Size-Characterisation Methodology for Studying Nanoparticle Behaviour in ‘Real’ Environmental Samples, Using Hydrodynamic Chromatography Coupled to ICP-MS. J. Anal. At. Spectrom. 2009, 24 (7), 964–972.
(26) Chang, Y.; Shih, Y.; Su, C.-H.; Ho, H.-C. Comparison of Three Analytical Methods to Measure the Size of Silver Nanoparticles in Real Environmental Water and Wastewater Samples. J. Hazard. Mater. 2017, 322, 95–104.
(27) Reed, K.; Cormack, A.; Kulkarni, A.; Mayton, M.; Sayle, D.; Klaessig, F.; Stadler, B. Exploring the Properties and Applications of Nanoceria: Is There Still Plenty of Room at the Bottom? Environ. Sci. Nano 2014, 1 (5), 390–405.
(28) Bi, X.; Reed, R.; Westerhoff, P. Chapter 8 - Control of Nanomaterials Used in Chemical Mechanical Polishing/Planarization Slurries during On-Site Industrial and Municipal Biological Wastewater Treatment. In Frontiers of Nanoscience; Baalousha, M., Lead, J. R., Eds.; Characterization of Nanomaterials in Complex Environmental and Biological Media; Elsevier, 2015; Vol. 8, pp 247–265.
(29) Adams, L. K.; Lyon, D. Y.; Alvarez, P. J. J. Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions. Water Res. 2006, 40 (19), 3527–3532.
(30) Winkler, H. C.; Suter, M.; Naegeli, H. Critical Review of the Safety Assessment of Nano-Structured Silica Additives in Food. J. Nanobiotechnology 2016, 14, 44.
(31) B. Reed, R.; P. Martin, D.; J. Bednar, A.; D. Montaño, M.; Westerhoff, P.; F. Ranville, J. Multi-Day Diurnal Measurements of Ti-Containing Nanoparticle and Organic Sunscreen Chemical Release during Recreational Use of a Natural Surface Water. Environ. Sci. Nano 2017, 4 (1), 69–77.
(32) Gondikas, A. P.; Kammer, F. von der; Reed, R. B.; Wagner, S.; Ranville, J. F.; Hofmann, T. Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environ. Sci. Technol. 2014, 48 (10), 5415–5422.
(33) Trapiella-Alfonso, L.; Bustos, A. R. M.; Ruiz Encinar, J.; M. Costa-Fernández, J.; Pereiro, R.; Sanz-Medel, A. New Integrated Elemental and Molecular Strategies as a Diagnostic Tool for the Quality of Water Soluble Quantum Dots and Their Bioconjugates. Nanoscale 2011, 3 (3), 954–957.
(34) Tiede, K.; A. Boxall, A. B.; Wang, X.; Gore, D.; Tiede, D.; Baxter, M.; David, H.; P. Tear, S.; Lewis, J. Application of Hydrodynamic Chromatography-ICP-MS to Investigate the Fate of Silver Nanoparticles in Activated Sludge. J. Anal. At. Spectrom. 2010, 25 (7), 1149–1154.
(35) Liu, F.-K. SEC Characterization of Au Nanoparticles Prepared through Seed-Assisted Synthesis. Chromatographia 2007, 66 (9–10), 791–796.
(36) Pergantis, S. A.; Jones-Lepp, T. L.; Heithmar, E. M. Hydrodynamic Chromatography Online with Single Particle-Inductively Coupled Plasma Mass Spectrometry for Ultratrace Detection of Metal-Containing Nanoparticles. Anal. Chem. 2012, 84 (15), 6454–6462.
(37) Striegel, A. M.; Brewer, A. K. Hydrodynamic Chromatography. Annu. Rev. Anal. Chem. 2012, 5 (1), 15–34.
(38) Striegel, A. M. Hydrodynamic Chromatography: Packed Columns, Multiple Detectors, and Microcapillaries. Anal. Bioanal. Chem. 2012, 402 (1), 77–81.
(39) Hoque, M. E.; Khosravi, K.; Newman, K.; Metcalfe, C. D. Detection and Characterization of Silver Nanoparticles in Aqueous Matrices Using Asymmetric-Flow Field Flow Fractionation with Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. A 2012, 1233, 109–115.
(40) Gigault, J.; Pettibone, J. M.; Schmitt, C.; Hackley, V. A. Rational Strategy for Characterization of Nanoscale Particles by Asymmetric-Flow Field Flow Fractionation: A Tutorial. Anal. Chim. Acta 2014, 809, 9–24.
(41) Hagendorfer, H.; Kaegi, R.; Traber, J.; Mertens, S. F. L.; Scherrers, R.; Ludwig, C.; Ulrich, A. Application of an Asymmetric Flow Field Flow Fractionation Multi-Detector Approach for Metallic Engineered Nanoparticle Characterization – Prospects and Limitations Demonstrated on Au Nanoparticles. Anal. Chim. Acta 2011, 706 (2), 367–378.
(42) Loeschner, K.; Navratilova, J.; Legros, S.; Wagner, S.; Grombe, R.; Snell, J.; von der Kammer, F.; Larsen, E. H. Optimization and Evaluation of Asymmetric Flow Field-Flow Fractionation of Silver Nanoparticles. J. Chromatogr. A 2013, 1272, 116–125.
(43) Zhou, X.-X.; Liu, R.; Liu, J.-F. Rapid Chromatographic Separation of Dissoluble Ag(I) and Silver-Containing Nanoparticles of 1–100 Nanometer in Antibacterial Products and Environmental Waters. Environ. Sci. Technol. 2014, 48 (24), 14516–14524.
(44) K. Brewer, A.; M. Striegel, A. Characterizing the Size, Shape, and Compactness of a Polydisperse Prolate Ellipsoidal Particle via Quadruple- Detector Hydrodynamic Chromatography. Analyst 2011, 136 (3), 515–519.
(45) Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83 (24), 9361–9369.