| 研究生: |
蔡雪雲 Tsai, Hsueh-Yun |
|---|---|
| 論文名稱: |
不同厚度多孔隙瀝青混凝土之績效評估 Performance Evaluation of Porous Asphalt Concrete with Various Thicknesses |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 多孔性瀝青混凝土(PAC) 、鋪面績效 、標稱粒徑(NMAS) |
| 外文關鍵詞: | Porous asphalt concrete (PAC), paving performance, nominal particle size (NMAS |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究依不同厚度多孔性瀝青混凝土(PAC)評估鋪面績效,國道8號之多孔隙瀝青混凝土路段評估項目包含「功能性」、「耐久性」及「安全性」等試驗,功能性部分是以透水量試驗及噪音量試驗來檢測,耐久性部分則用車轍量試驗、平坦度試驗及Clegg衝擊試驗檢測,安全性部分則依照與鋪面摩擦之抗滑度試驗檢測。數據說明多孔性瀝青混凝土(Porous Asphalt Concrete,PAC)具有透水性能、表面粗糙,提供足夠摩擦阻力,提升安全性等特性, 研究顯示鋪築厚度與最大標稱粒徑(NMAS)大小皆影響路面減噪效果,鋪築厚度從3cm增加至5cm,減噪效果越佳,且交通壓實後的透水量越能維持,也較能抵抗交通載重形成之車轍量,多孔隙瀝青混凝土對於低水分敏感性、低噪音、抗車轍、抗滑度等特性,皆有良好成效。
關鍵字:
多孔性瀝青混凝土(PAC)、鋪面績效、標稱粒徑(NMAS)。
In this study, the pavement performance was evaluated according to different thickness porous asphalt concrete (PAC). The evaluation project of National Highway No. 8 multi-porous asphalt concrete section included tests such as “functionality”, “endurance” and “safety”. The water permeability test and the noise amount test are used for testing. The durability part is tested by the rutting test, the flatness test and the Clegg impact test, and the safety part is tested according to the anti-slip test with the friction of the pavement. The data shows that Porous Asphalt Concrete (PAC) has water permeability, rough surface, sufficient friction resistance, and improved safety. The study shows that paving thickness and maximum nominal particle size (NMAS) affect pavement reduction. The noise effect, the thickness of the paving is increased from 3cm to 5cm, the noise reduction effect is better, and the water permeability after traffic compaction is maintained, and the rutting amount formed by the traffic load is more resistant. The porosity of the porous asphalt concrete is low. Good performance with low noise, anti-rutting and anti-slip properties.
小島逸平(1995),「排水性鋪裝」,日本瀝青協會,第66頁。
日本道路協會(1997),「排水性鋪裝技術指針(案)」,日本。
平出純一(1998),「排水性舗装の取り組み」,日本瀝青協會,第2~3頁。
交通部臺灣區國道高速公路局(2011),「高速公路養護手冊」,交通部臺灣區國道高速公路局技術規範,第3-9頁。
交通部中央氣象局(2018),「每日雨量」https://www.cwb.gov.tw/V7/climate/dailyPrecipitation/dP.htm.中央氣象局全球資訊網,2018年7月8日瀏覽。
李柏賢(2015),「分析多孔隙瀝青混凝土績效之影響因素」,國立成功大學土木工程研究所碩士論文,台南。
夏明勝(2007),「瀝青混凝土鋪面特性與噪音防制」,臺灣公路工程,第33卷第11期-508。
高雄市政府環境保護局 (2014) ,「公告高雄市轄境噪音管制區範圍及分類」,http://ncs.epa.gov.tw/AA/tw-a/26.pdf ,噪音管制資訊網,2018年4月16日瀏覽。
孫揚洲(2010),「多孔隙瀝青鋪面績效及生命週期經濟效益評估」,國立成功大學土木工程研究所碩士論文,台南。
陳永森、陳章波(2005),「臺灣水資源環境空間永續利用」,台北市。
行政院環境保護署(2010),「環境音量標準」,http://noise.ksepb.gov.tw/noise/law.asp ,高雄市噪音防制網,2018年4月24日瀏覽。
陳建旭、王慶雄(2011),「Clegg衝擊試驗評估鋪面結構之成果分析」,臺灣公路工程,第37卷第4-5期,第30-44頁。
黃博仁(2001),「排水性瀝青混合料鋪面試驗路段之成效評估」,國立中央大學土木工程研究所碩士論文,桃園。
蔡攀鰲(2004),「瀝青混凝土」三民書局,台北。
Akihiro, M. , Toshiro, J. , Takaaki, N. , Hiroshi I. and Katsuya, T. (2014). “Construction and Pavement Properties After Seven Years in Porous Asphalt with Long Life,” Construction and Building Materials, Vol.50, pp.401~413.
Anfosso-L’ed’ee, F. and Do, M. T. (2002). “Geometric Descriptors of Road Surface Texture in Relation to Tire-Road Noise,” Transportation Research Record: Journal of the Transportation Research Board, No. 1806, pp.160-167.
Alvarez, A.E., Martin, A.E., Estakhri, C. and Izzo, R. (2009). “Evaluation of Durability Tests for Permeable Friction Course Mixtures,” International Journal of Pavement Engineering, Vol.11, pp.49-60.
Asphalt Institute(2007),Asphait Hand book,kentucky.lisa.
Brousseaud,Y. and Anfosso-Le’de’e, F. (2005). “Review of Existing Low Noise Pavement Solutions in France,” Sustainable Road Surfaces for Traffic Noise Control, SILVIA-LCPC-011-01-WP4-310505, European Commission.
Chen, J.S. and Huang, C.C. (2010). "Effect of Surface Characteristics on Bonding Properties of Bituminous Tack Coat," Transportation Research Record: Journal of the Transportation Research Board, No. 2180, pp.142-149.
Cooley Jr., L.A. (2009). “Performance and Maintenance of Permeable Friction Courses; Vol. III Annotated Literature Review,” NCHRP Project 9-41, Burns Cooley Dennis, Inc., Transportation Research Board, Washington, D.C.
Elisabete, F., Paulo, P., Luís de Picado-Santosb and Adriana, S. (2009). “Traffic Noise Changes due to Water on Porous and Dense Asphalt Surfaces,” Road Materials and Pavement Design, Vol.10, pp.587-607.
Hossam, F. H., Salim, A., and Ramzi, T. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol.17, pp.416-422
Henry, J.J. (2000). “Evaluation of Pavement Friction Characteristics,” Transportation Research Board, NCHRP Synthesis 291, National Research Council, Washington, D.C.
Huber, G.(2000). “Performance Survey on Open-Graded Friction Course Mixes.” Transportation Research Board, NCHRP Synthesis 284, National Research Council, Washington, D.C.
Kandhal,P.S.(2002) Desing Construction and Maintenance of Open-Graded Asphalt Friction Courses, National Asphalt Pavement Association lnformation Series115.
Liu, M. and Huang,X., Xue,G(2016) “Effects of double layer porous asphalt pavement of urban streetson noise reduction” International Journal of Sustainable Built Environment 5, 183–196.
Lee, C.S.Y., and Fleming, G.G. (1996). “Measurement of Highway- Related Noise,” U.S. Department of Transportation, FHWA-PD-96- 046.
Lefebvre,G.(1993).”Porous Asphalt,” Permanent lntrnational Association of Road Congresses.
Lou, Y. (2003). “Effect of Pavement Temperature on Frictional Properties of Hot-Mix-Asphalt Pavement Surfaces at the Virginia Smart Road”, Master of Science Thesis, Virginia Polytechnic Institute, Virginia State University.
Mohammad, L. N., Negulescu, I. I., Wu, Z., Daranga, C., Daly, W. H., and Abadie, C. (2003) “Investigation of The Use of Recy-cled Polymer Modified Asphalt Binder in Asphalt Concrete Pavements,” Journal of the Association of Asphalt Paving Technologists, Vol.72, pp.551-594.
Nakanishi, H., Asano, K. and Goto, K. (2000) “Study on Im-provement in Durability of Porous Asphalt Concrete,” Proceeding of Road Engineering and Association of Asian and Australasia, Tokyo, Japan.
Ohkawa, H., Sato, T., and Hokari, K. (1993). “Study on the Estimation of Permeability Coefficient of Drain Asphalt,” Proceedings of the Japan Society of Civil Engineers, No. 478, pp.101-108.
Oliver J.W.H. (2009). “Factors Affecting the Correlation of Skid Testing Machines and A Proposed Correlation Framework,” Road and Transport Research, Vol.18, pp.39-48.
Ongel, A., Kohler, E. and Harvey, J. (2008). “Principal Components Regression of Onboard Sound Intensity Levels,” Journal of Transportation Engineering, ASCE, Vol.134, No.11, pp.459-466.
Panda, M. and Mazumdar, M. (1999) “Engineering Properties of EVA-Modified Bitumen Binder for Paving Mixes,” Journal of Materials in Civil Engineering, Vol.11, pp.131-137.
Pasetto, M.(2000). “Porous Asphalt Concretes with Added Microfibres,” 2nd Eurasphalt & Eurobitumen Congress, Beacelona, Spain, pp.438-447.
Tan, S. A., T. F. Fwa, and K. C. Chai. (2004). “Drainage Consid-erations for Porous Asphalt Surface Course Design”, Journal of the Transportation Research Board, Transportation Re-search Record No. 1868, pp.142–149
Takahashi, S. (2013). “Comprehensive Study on the Porous Asphalt Effects on Expressways in Japan: Based on Field Data Analysis in the Last Decade”, Road Materials and Pavement Design, Vol. 14(2), 239–255
Tappeiner, W.J. (1993). Open-Graded Asphalt Friction Course, NAPA IS115.
Yoshikuni, O. and Takshi, T. (1995) “Present Status Asphalt on Espressway in Japan”, Proceedings of 8th Road Engineering Association of Asia and Australasia, Vol.1, pp.301-306
校內:2020-08-11公開