| 研究生: |
劉至祐 Liu, Chih-Yu |
|---|---|
| 論文名稱: |
應用於K-band之除三注入鎖定除頻器與寬頻壓控振盪器的設計與實現 Design and Implementation of Divide-by-three ILFD and Wide Tuning Range VCO for K-band Application |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 注入鎖定除頻器 、壓控振盪器 |
| 外文關鍵詞: | ILFD, VCO |
| 相關次數: | 點閱:72 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著消費性電子產品市場的前進,越來越多不同的無線通訊系統標準與規範被制定。為了滿足這些系統需求,滿足特殊需求的單一RF子電路成為本論文的設計目標。在此次的作品中,選擇互補式金氧半(CMOS)製程來實現我們的電路是由於其具有高度整合性與低成本的特質。
在本論文中,設計並分析了兩個操作在K-band的除三注入鎖定除頻器與22-29-GHz 使用三倍頻電路的壓控振盪器。第一個實作是使用電流源注入(current-bleeding)與並聯共振(shunt-peaking)的兩個技巧而提高注入鎖定範圍(locking range)的除三注入鎖定除頻電路。此一電路是製作於 0.18-μm CMOS 1P6M製程並且操作在K-band。從量測的結果得知,此次設計的電路在輸入訊號0 dBm時的整體注入鎖定範圍為3.86 GHz。在提供電壓為1.2 V時的消耗功率為4.28 mW。量測結果顯示輸出二次與三次諧波對操作在8.4-GHz的輸出之抑制分別為38.05 dBc和37.89 dBc。在鎖定狀況下的量測結果顯示當頻率位移為1 MHz和輸入訊號是+4 dBm之下相位雜訊為-139 dBc/Hz。
第二個實作是使用互補式金氧半電晶體串聯耦合(CMOS series-coupled)的架構下輸出四相位的除三注入鎖定除頻電路。此次設計為利用修改過的傳統互補式金氧半電晶體串聯耦合電路結合除三注入鎖定除頻電路來四相位的輸出。此一電路也是製作於0.18-μm CMOS 1P6M製程。從量測的結果得知,此次設計的電路在輸入訊號0 dBm時的整體注入鎖定範圍為760 MHz。量測結果顯示輸出二次與三次諧波對操作在7.72-GHz的輸出之抑制分別為35.78 dBc和39.37 dBc。在輸入訊號是0 dBm的鎖定狀況下,量測結果顯示當頻率位移為100 KHz和1 MHz之下相位雜訊分別為-119 dBc/Hz和-143.6 dBc/Hz。
最後一個實作為操作頻率在22-29 GHz利用三倍頻電路的寬頻壓控振盪器設計。此電路為低頻產生電路和三倍頻電路所組成而藉此可得到很好的頻率調動能力。此電路也是實現於0.18-μm CMOS 1P6M製程(現正在晶片製作中)。從模擬的結果顯示,輸出的頻率範圍是6.67-GHz並且功率消耗為9.4 mW。模擬的相位雜訊在輸入訊號是0 dBm時是-104.2 dBc/Hz並且FOMT是-191.4 dBc/Hz。跟之前發表的文獻結果比較,此電路具有最寬的頻率可調範圍。
Due to the advances of market in consumer electronic products, many different standards and regulations of wireless communication system have been established. To fulfill the system requirements, the development of each individual RF circuit blocks for a special purpose is our design target in this thesis. In this work, we choose CMOS technology to implement the RF blocks such as frequency divider and oscillator due to its high integration capability and low cost.
In this thesis, two divide-by-three injection-locked frequency dividers (ILFDs) within the frequency range of K-Band and a 22-29-GHz voltage-controlled oscillator (VCO) by using frequency tripling scheme have been proposed and characterized. The first work is an enhanced locking range divide-by-three ILFD with shunt-peaking and current-bleeding techniques. This work was fabricated in 0.18-μm CMOS 1P6M technology and it is operated in K-band. From the measurement results, the proposed circuit the total locking range is 3.86 GHz for an input injection power of 0 dBm. The power consumption is 4.28 mW at a supply voltage of 1.2V. The second- and third-order harmonic suppressions are 38.05 dBc and 37.89 dBc, respectively, for a divided output frequency of 8.4 GHz. The output phase noise under lock is -139 dBc/Hz at an offset of 1 MHz from the oscillation frequency as the input injection power is of +4 dBm.
The second work is a 24-GHz quadrature divide-by-three injection-locked frequency divider with CMOS series-coupled topology. The quadrature outputs are generated by employing a modified topology which comes from a conventional CMOS series-coupled quadrature LC-oscillator with divide-by-three ILFD. This work was fabricated in 0.18-μm CMOS 1P6M technology, too. The measured locking range is 760 MHz for an injection power of 0 dBm. The second- and third-order harmonic suppressions are about 35.78 dBc and 39.37 dBc, respectively, for a divided output frequency of 7.72 GHz. The measured phase noises under lock are -119 dBc/Hz and -143.6 dBc/Hz at 100-KHz and 1-MHz offsets, respectively, with an injection power of +0 dBm.
The last work is a 22-29-GHz wide tuning range oscillator by using the frequency tripling scheme from a VCO of 7~9 GHz. The proposed work has two stages which are composed of a low frequency generator and frequency tripler to attain the excellently wide frequency tuning capability. This work was also implemented by 0.18-μm CMOS 1P6M technology (now in chip fabrication). From the simulation results, tuning rage is 6.76 GHz and core dissipation power is 9.4 mW. The simulated phase noise is -104.2 dBc / Hz at 1 MHz offset frequency and figure-of-merit with tuning range (FOMT) is -191.4 dBc / Hz. The proposed work has achieved highest tuning range than previous published results.
[1] X. Guan and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368–373, Feb. 2004.
[2] Y.-H. Chen, H.-H. Hsieh, and L.-H. Lu, “A 24-GHz Receiver Frontend with an LO Signal Generator in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp.1043-1051, May 2008.
[3] A. W. L. Ng et al., “A 1-V 24-GHz 17.5-mW phase-locked loop in a 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1236–1244, Jun. 2006.
[4] V. Jain, S. Sundararaman, and P. Heydari, “A CMOS 22-29-GHz receiver front-end for UWB automotive pulse-radars,” in IEEE Custom Integr. Circuits Conf., Sep. 2007, pp. 757–760.
[5] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
[6] S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015–1027, June 2003.
[7] H. Wu and A. Hajimiri, “A 19 GHz, 0.5mW, 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 412–413, 471.
[8] R. Y. Chen, “High-speed CMOS frequency divider,” Electron. Lett., vol. 33, no. 22, pp.1864-1865, Oct. 1997.
[9] B. Razavi, K. F. Lee, and R. H. Yan, “Design of high-speed, low-power frequency dividers and phase-locked loops in deep submicron CMOS,” IEEE J. Solid-State Circuits, vol. 30, no.2, pp. 101–109, Feb. 1995.
[10] S. Rong, A. W. L. Ng, and H. C. Luong, “0.9mW 7GHz and 1.6mW 60GHz frequency dividers with locking-range enhancement in 0.13Sm CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2009, pp. 96-97.
[11] H. Wu and L. Zhang, “A 16-to-18GHz 0.18-μm Epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2006, pp. 2482-2491.
[12] S.-L. Jang, C.-F. Lee, and W.-H. Yen, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., vol. 18, no.2, pp.142-144, Feb. 2008.
[13] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13-um CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp.2409-2415, Nov.2008.
[14] S.-L. Jang and C.-W. Chang, “A 90 nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no.4, pp.229-231, Apr. 2010.
[15] S.-G. Lee and J.-K. Choi, “Current-reuse Bleeding mixer,” Electron. Lett., vol. 36, no. 8, pp. 696-697, Apr. 2000.
[16] R. Magoon, A. Molnar, J. Zachan, G. Hatcher, and W. Rhee, “A single chip quad band (850/900/1800/1900 MHz) direct conversion GSM/GPRS RF transceiver with integrated VCOs and fraction-N synthesizer,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp.1710-1720, Dec. 2002.
[17] C. Mishra et al., “Frequency planning and synthesizer architectures for multiband OFDM UWB radios,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3744-3756, Dec. 2005.
[18] C.-F. Liang, S.-I. Liu, Y. -H. Chen, T. -Y. Yang, and G. -K. Ma, “A 14-band frequency synthesizer for MB-OFDM UWB application,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 428-437.
[19] W.-Z. Chen and C.-L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25 m CMOS technology,” in IEEE Eur. Solid-State Circuits Conf., Sept. 2002, pp. 89-92.
[20] C.-H. Wang, C.-C. Chen, M.-F. Lei, M.-C. Chuang, and H. Wang, “A 66-72 GHz divide-by-3 injection-locked frequency divider in 0.13-μm CMOS technology,” in Asian Solid-State Circuits Conf., Nov. 2007, pp.344-347.
[21] S.-L. Jang, C.-W. Chang, W.-C. Cheng, C. F. Lee, and M. H. Juang, “Low-power divide-by-3 injection-locked frequency dividers implemented with injection transformer,” Electron. Lett., vol. 45, no. 5, pp. 240-241, Feb. 2009.
[22] C.-C. Lin and C.-K. Wang, “A regenerative semi-dynamic frequency divider for mode-1 MB-OFDM UWB hopping carrier generator,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005, pp.206-207.
[23] R. Magoon and A. Molnar, “RF local oscillator path for GSM direct conversion transceiver with true 50% duty cycle divide by three and active third harmonic cancellation,” in IEEE Radio Frequency Integrated Circuits Symp., Jun. 2002, pp.23-26.
[24] S. Rong and H.-C. Luong, “A 1V 1.7mW 25GHz transformer-feedback divide-by-3 frequency divider with quadrature outputs,” in IEEE Asian Solid-State Circuit conf., Nov. 2007, pp. 328-331.
[25] V. Jain, S. Sundararaman, and P. Heydari, “A 22-29-GHz UWB pulse-radar receiver front-end in 0.18μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1903-1914, Aug. 2009.
[26] P. Kinget, “Integrated GHz voltage controlled oscillators,” in Analog Circuit Design, W. Sansen, J. Huijsing, and R. van de Plassche, Eds. Boston, MA: Kluwer, 1999.
[27] K. Kwok, J. R. Long, and J. J. Pekarik, “A 23-to-29GHz differentially tuned varactorless VCO in 0.13um CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 194 – 195.
[28] J.-C. Chien and L.-H. Lu, “Design of Wide-Tuning-Range Millimeter-Wave CMOS VCO With a Standing-Wave Architecture,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1942–1952, Sep. 2007.
[29] D. Ozis, N. M. Neihart, and D. J. Allstot, “Differential VCO and passive frequency doubler in 0.18 um CMOS for 24 GHz applications,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2006, pp.4
[30] B. Jung et al., “A 20GHz VCO with 5GHz tuning range in 0.25um CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2004, pp. 178-179.
[31] C.-H. Chiu, K.-H. Liang, H.-Y. Chang, and Y.-J. Chan, “A low phase noise 26-GHz push-push VCO with a wide tuning range in 0.18-μm CMOS technology,” in Asia-Pacific Microw. Conf., Dec. 2006, pp. 1128-1131.
[32] Y.-H. Kuo, J.-H. Tsai, and T.-W Huang, ‘‘A 1.7-mW, 16.8% frequency tuning, 24-GHz transformer-based LC-VCO using 0.18-µm CMOS technology,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2009, pp. 79-82.
[33] L. Li, P. Reynaert, and M. S. J. Steyaert, “Design and analysis of a 90 nm mm-wave oscillator ssing inductive-division LC tank,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1950–1958, Jul. 2009.