簡易檢索 / 詳目顯示

研究生: 沈立宇
Shen, Li-Yu
論文名稱: 二維有限元素法在FBAR元件的分析與應用
Analysis and Applications of 2D FEM on FBAR devices
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 112
中文關鍵詞: FBARFEM縱向模態橫向模態
外文關鍵詞: FBAR, FEM, TE mode, Area extension mode, Spurious modes
相關次數: 點閱:41下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要依靠有限元素法(Finite Element Method, FEM)去分析薄膜體聲波諧振器(thin Film Bulk Acoustic wave resonator, FBAR)元件。在簡化FBAR元件模型之後,可以利用FEM 去評估FBAR元件的諧振頻率點及其各項性質已達到節省直接進行實驗所花的時間及經費。
    首先,本研究會分別計算解析解以及結合FBAR元件中核心的壓電材料的壓電方程式和FEM去計算一維單層模型下的數值解,並互相比較誤差。其中,展示及討論了兩種不同利用FEM的方法去評估諧振頻率點。在兩者之中,在不解耦方程式並利用局部矩陣(local matrix)的情況下,可以利用更少的計算資源來達到更精準且接近解析解的數值解。接著,計算及分析多層的FBAR元件模型在一維情況下的差異,可以見到與預估的情況相符合。在一維模型的最後,也會利用計算結果去比較真實的實驗結果。在第二部分,本研究相同的利用壓電方程式及FEM去計算在二維情況下的單層壓電模型。透過單層的模型,可以去分析更多元FBAR元件的性質,包括面積對以及特殊邊界條件對於FBAR元件諧振頻率的影響,包括縱向模態和橫向模態。在本研究最後,數值法運算上所造成的誤差及錯誤會被簡單分析及討論。
    本研究成果展示了如何利用數值方法去評估FBAR元件並給予發展及理論模型更多的協助,並期望在未來能達到更準確的評估及給予更多的支持。

    This study primarily relies on the Finite Element Method (FEM) to analyze thin Film Bulk Acoustic wave resonator (FBAR) devices. After simplifying the FBAR device model, FEM can be used to evaluate various properties of the FBAR device.
    Firstly, this study will separately calculate the analytical solution and the numerical solution of a one-dimensional single-layer model in the FBAR device with FEM, and compare the errors between them. Next, the differences in the one-dimensional case of a multi-layer FBAR device model are calculated and analyzed, showing the difference between single layer structure and multi-layers structure.
    In the second part, the study similarly uses piezoelectric equations and FEM to calculate a single-layer piezoelectric model in a two-dimensional situation. Through the single-layer model, more properties of the FBAR device can be analyzed, including the impact of area and a special boundary condition on the resonant frequency, covering both TE and area extension modes. At the end of this study, the spurious mode caused by numerical computation are simply analyzed and discussed.
    The results of this study demonstrate how to use numerical methods to evaluate FBAR devices, providing more assistance for the development and theoretical models

    摘要I 目錄IV Table CatalogVI Figure CatalogVII Chapter 1 Introduction11 1-1 Background and Motivation11 1-2 Research Protocol14 Chapter 2 Fundamental Theory of FBAR Device15 2-1Piezoelectric effect15 2-2 Formulation of Piezoelectric Materials16 2-2-1 Hooke’s law for linear elastic materials16 2-2-2 Linear electrical behavior17 2-2-3 Piezoelectric constitutive equation18 2-2-4 Material coefficient and other constant21 2-3 FBAR device23 2-3-1 FBAR structure24 2-3-2 FBAR operational principle25 2-3-3 FBAR model28 Chapter 3 Finite Element Method31 3-1 Boundary value problem31 3-2 Mesh32 3-3 Matrix form of Problems35 3-3-1 Weighted residual method35 3-3-2 Variational method37 Chapter 4 FEM on 1D FBAR Device40 4-1 Piezoelectric layer 1D model40 4-1-1 Exact solution of 1D piezoelectric layer40 4-1-2 Numerical method via decoupling in 1D piezoelectric layer46 4-1-3 Numerical method via local matrix in 1D piezoelectric layer57 4-2 FBAR device 1D model70 4-2-1 Numerical solution of 1D 3-layer FBAR device70 4-2-2 Numerical solution of four-layer 1D FBAR device75 Chapter 5 FEM on 2D FBAR Device78 5-1 Simplified FBAR 2D model79 5-2 Properties of 2D FBAR model89 5-2-1 Variations of different surface area in 2D model89 5-2-2 Clamped boundary on FBAR device94 5-3 Spurious mode of numerical result99 Chapter 6 Conclusion and Future Development104 6-1 Conclusion104 6-2 Future Development107 Reference108

    [1] Y. Liu, Y. Cai, Y. Zhang, A. Tovstopyat, S. Liu, and C. Sun, "Materials, design, and characteristics of bulk acoustic wave resonator: A review," Micromachines, vol. 11, no. 7, p. 630, 2020.
    [2] Z. Zhang, Y. Lu, W. Pang, D. Zhang, and H. Zhang, "A high performance C-band FBAR filter," in 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 2013: IEEE, pp. 923-926.
    [3] S. Mahon and R. Aigner, "Bulk acoustic wave devices–why, how, and where they are going," in CS Mantech Conference, 2007, pp. 15-18.
    [4] J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, "Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system," in 2000 IEEE ultrasonics symposium. proceedings. an international symposium (Cat. No. 00CH37121), 2000, vol. 1: IEEE, pp. 863-868.
    [5] Q. Li, X. Li, Y. Xie, Z. Cao, and J. Dong, "Modified loss mechanism of Mason model for bulk acoustic wave resonators," in 2021 IEEE Asia-Pacific Microwave Conference (APMC), 2021: IEEE, pp. 88-90.
    [6] G. F. Iriarte, AlN thin film electroacoustic devices. 2003.
    [7] J. Rosenbaum, Bulk Acoustic Wave Theory and Devices Artech House Acoustics Library: Artech Print on Demand, 1988.
    [8] I. S. Board, 176-1987 - IEEE Standard on Piezoelectricity. IEEE, 1988.
    [9] L. Qin, Q. Chen, H. Cheng, and Q.-M. Wang, "Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 8, pp. 1840-1853, 2010.
    [10] G. G. Yaralioglu, A. S. Ergun, B. Bayram, E. Haeggstrom, and B. T. Khuri-Yakub, "Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 4, pp. 449-456, 2003.
    [11] K. M. Lakin, "A review of thin-film resonator technology," IEEE microwave magazine, vol. 4, no. 4, pp. 61-67, 2003.
    [12] H. Campanella, Acoustic wave and electromechanical resonators: concept to key applications. ARTECH HOUSE, 2010.
    [13] C. C. Ruppel, "Acoustic wave filter technology–a review," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 64, no. 9, pp. 1390-1400, 2017.
    [14] J. H. Jung, Y. H. Lee, J. H. Lee, and H. C. Choi, "Vibration mode analysis of RF film bulk acoustic wave resonator using finite element method," in 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 01CH37263), 2001, vol. 1: IEEE, pp. 847-850.
    [15] D. Sun, J. Manges, X. Yuan, and Z. Cendes, "Spurious modes in finite-element methods," IEEE Antennas and Propagation Magazine, vol. 37, no. 5, pp. 12-24, 1995.
    [16] Y. Kumar, K. Rangra, and R. Agarwal, "Design and simulation of FBAR for quality factor enhancement," Mapan, vol. 32, pp. 113-119, 2017.
    [17] L. Xu, X. Wu, and Y. Zeng, "Simulation and research of piezoelectric film bulk acoustic resonator based on mason model," in 2021 6th International Conference on Integrated Circuits and Microsystems (ICICM), 2021: IEEE, pp. 184-188.
    [18] M. V. K. C. Sheppard Salon, Numerical Methods in Electromagnetism. 2000.
    [19] B. A. Finlayson, The method of weighted residuals and variational principles. SIAM, 2013.
    [20] V. Thomée, Galerkin finite element methods for parabolic problems. Springer Science & Business Media, 2007.
    [21] D.-j. Huang and J. Wang, "Effects of temperature on frequency properties of FBAR," in Proceedings of the 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, 2014: IEEE, pp. 379-382.
    [22] C. Buccella, V. De Santis, M. Feliziani, and P. Tognolatti, "Finite element modelling of a thin‐film bulk acoustic resonator (FBAR)," COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, vol. 27, no. 6, pp. 1296-1306, 2008.
    [23] H. Campanella, E. Martincic, P. Nouet, A. Uranga, and J. Esteve, "Analytical and finite-element modeling of localized-mass sensitivity of thin-film bulk acoustic-wave resonators (FBAR)," IEEE Sensors Journal, vol. 9, no. 8, pp. 892-901, 2009.
    [24] W.-Y. Lin, "Study on the Second Order RF Filters of FBARs Using Mass Loading Effect," 2022.
    [25] M. K. Özlem Özgün, MATLAB®-based Finite Element Programming in Electromagnetic Modeling. New York: CRC Press, 2019.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE