簡易檢索 / 詳目顯示

研究生: 王建鈞
Wang, Chien-Chun
論文名稱: 化學機械研磨中研磨液流場計算與製程參數最佳化
Slurry Flow Calculation and Process Parameter Optimization for Chemical Mechanical Planarization
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 84
中文關鍵詞: 材料移除率不均勻度最佳化化學機械研磨研磨液流場
外文關鍵詞: non-uniformity, slurry flow, CMP, optimization, material removal rate
相關次數: 點閱:163下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在超大型積體電路中,化學機械研磨扮演著使晶圓金屬層和介電層平坦化的重要角色。高穩定性與高效能的化學機械研磨製程需要將研磨液持續均勻的注入晶圓與研磨墊之交界面,因此在研磨墊上通常必需刻製溝槽以利研磨液之流動,並且幫助研磨液將晶圓磨除後的雜質順利排出,防止雜質堆積刮傷晶圓表面。本文從潤滑理論和接觸力學模型出發,建立含有溝槽研磨墊接觸應力和流場計算之二維理論模型,以探討研磨液流場流動特性。我們並進行廣泛之參數研究,以找出最佳化之製程參數設定。
    結果發現晶圓背部壓力提高使得交界面接觸應力上升,進而使流體壓力與材料移除率增加,且材料移除率之不均勻度在特定參數範圍中有一最小值。同時,當接觸比逐漸降低亦即晶圓與研磨墊之接觸面積減少時,其交界面接觸應力也將上升,進而讓流體壓力增加;然而,晶圓與研磨墊之接觸面積減少,雖然局部材料移除率提高,但全面材料移除率則會降低。另外,我們從材料移除率之不均勻度最小值,能夠找出晶圓背部壓力的最佳參數值。

    Chemical mechanical planarization (CMP) has played an enabling role in producing near-perfect planarity of interconnection and metal layers in ultralarge-scale integrated (ULSI) devices. For stable and high performance of CMP, it is important to ensure uniform slurry flow at the pad-wafer interface, hence necessitating the use of grooved pads that help discharge debris and prevent subsequent particle loading effects. Here, on the basis of two- dimensional lubrication theory and contact mechanics models, we calculate CMP slurry flow with a grooved pad. Through extensive parameter studies, we examine the effects of pad groove designs on the slurry flow characteristics, and attempt to find the optimal process parameter settings.
    Our results indicate that increasing the wafer back pressure would increase the contact stress on the pad-wafer interface, so that the fluid pressure and material removal rate (MRR) are increased as well. It is also found that the wafer back pressure may be tuned to reduce the MRR non-uniformity to a minimum within a prescribed process parameter range. Moreover, as the presence of pad grooves reduces the contact area between the pad and wafer, the contact stress and fluid pressure on the pad-wafer interface therefore also are increased, resulting in increased local MRR. However, the overall MRR is decreased due to reduced total contact area.

    中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 符號說明 Ⅸ 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目的 6 1.4 本文架構 7 第二章 研磨液流場與晶圓接觸應力之計算方法 8 2.1 二維物理模型 9 2.2 晶圓與研磨墊之間的接觸應力分佈 10 2.2.1 溝槽對接觸應力之影響 11 2.2.2 排除晶圓邊緣之奇異點 13 2.3 晶圓與研磨墊之間的研磨液液膜厚度分佈 13 2.3.1 考慮柱狀物變形之總體液膜厚度 14 2.3.2 研磨墊溝槽毀壞之判定 16 2.4 Reynolds方程式計算流體壓力分佈 16 2.5 數值方法 17 2.6 多重解之正確性與穩定性討論 20 2.6.1 計算域之網格數量 21 2.6.2 晶圓邊緣截去量 22 2.6.3 多重解穩定性 23 第三章 研磨液流場特性之討論 26 3.1 晶圓接觸應力之討論 27 3.2 研磨液液膜厚度之討論 28 3.3 流體壓力之討論 30 3.4 體積流率之討論 34 3.5 材料磨除率之討論 37 3.6 小結 41 第四章 數值計算結果與實驗結果之比較 43 4.1 計算不均勻度 44 4.2 數值模擬參數設定 45 4.3 不均勻度計算方法 49 4.4 數值計算與實驗結果比較 50 4.5 小結 55 第五章 12吋晶圓之數值模擬結果探討 56 5.1 接觸應力與等效液膜厚度之討論 58 5.2 研磨液平均流體壓力與研磨相對速度之討論 59 5.3 研磨液平均體積流率與研磨相對速度之討論 61 5.4 材料移除率與研磨相對速度之討論 64 5.5 晶圓不均勻度與研磨相對速度之討論 66 5.6 小結 69 第六章 製程參數最佳化之討論 70 6.1 製程參數最佳化方法之流程 70 6.2 4吋晶圓製程參數最佳化 72 6.3 12吋晶圓製程參數最佳化 74 6.4 小結 77 第七章 結論與未來研究方向 79 7.1 全文歸納 79 7.2 結論 79 7.3 未來研究方向與展望 81 參考文獻 82 自述 84

    [1] 菊地正典(陳連春譯), 透視半導體, 建興出版社, 台北, 1&114~117, 2004.
    [2] 前田和夫(鄭政忠譯), 半導體製造裝置, 普林斯頓國際有限公司, 台北, 22~39, 2003.
    [3] R. K. Singh and R. Bajaj, “Advances in chemical-mechanical planarization”, MRS Bull., 27, 743, 2002.
    [4] 土肥俊郎(王建榮等人編譯), 半導體平坦化CMP技術, 全華科技圖書股份有限公司, 台北, 1-1~1-10, 2000.
    [5] W. J. Patrick, W. L. Guthrie, C. L. Standley, and P. M. Schiable, “Application of chemical mechanical polishing to the fabrication of VLSI circuit interconnections”, J. Electrochem Soc., 138, 1778, 1991.
    [6] R. K. Singh, S.-M. Lee, K.-S. Choi, G. B. Basim, W. Choi, Z. Chen, and B. M. Moudgil, “Fundamentals of slurry design for CMP of metal and dielectric materials”, MRS Bull., 27, 752, 2002.
    [7] M. Moinpour, A. Tregub, A. Oehler, and K. Cadien, “Advances in characterization of CMP consumables”, MRS Bull., 27, 766, 2002.
    [8] T. K. Doy, K. Seshimo, K. Suzuki, A. Philipossian, and M. Kinoshita, “Impact of No-
    vel Pad Groove Designs on Removal Rate and Uniformity of Dielectric and Copper CMP“, J. Electrochem Soc., 151, G196, 2004.
    [9] D. Rosales-Yeomans, T. Doi, M. Kinoshita, T. Suzuki, and A. Philipossian, “Effect of pad groove designs on the frictional and removal rate characteristics of ILD CMP”, J. Electrochem Soc., 152, G62, 2005.
    [10] F. Preston, “The Theory and Design of Plate Glass Polishing Machines”, J. Soc. Gla-
    ss Technol., 11, 214, 1927.
    [11] J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, “Chemical Mechanical Planari-
    zation of Microelectronic Materials”, Wiley, New York, 1997.
    [12] J. Levert, R. Baker, F. Mess, R. Salant, and S. Danyluk, “Mechanisms of Chemical- Mechanical Polishing of SiO2 Dielectric on Integrated Circuits”, Tribol. Trans., 41, No. 4, 593–599, 1998.
    [13] J. Tichy, J. A. Levert, L. Shan, and S, Danyluk, “Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing”, J. Electrochem Soc., 146, 1523,
    1999.
    [14] L. Shan, J. Levert, L. Meade, J. Tichy, and S. Danyluk, “Interfacial Fluid Mechanics and Pressure Prediction in Chemical Mechanical Polishing”, ASME J. Tribol., 122, 539, 2000.
    [15] R. K. Subramanian, L. Zhang, and S. V. Babu, “Transport phenomena in chemical mechanical polishing”, J. Electrochem Soc., 146, 4263, 1999.
    [16] K. Bakhtari, R. O. Guldiken, A. A. Busnaina, and J.-G. Park, “Experimental and analytical study of submicrometer particle removal from deep trenches”, J. Electrochem Soc., 153, C603, 2006.
    [17] G. P. Muldowney and D. P. Tselepidakis, Proceedings of the 2004 CMP-MIC Conference, 022504, 2004.
    [18] G. P. Muldowney and D. B. James, “Characterization of CMP pad surface texture and pad-wafer contact”, Mat. Res. Soc. Symp. Proc., 816, 147, 2004.
    [19] Y-C. Wang, and T-S. Yang, “Effects of Pad Grooves on Chemical Mechanical Planarization”, J. Electrochem. Soc, 154, 2007.
    [20] S.W. Park, C.B. Kim, S.Y. Kim, Y.J. Seo, “Design of experimental optimization for ULSI CMP process applications“, Microelectron. Eng., 66, 488, 2003.
    [21] K. L. Johnson, “Contact Mechanics”, Cambridge University Press, UK, 41& 104~106, 1985.
    [22] J. A. Greenwood and J. B. P. Williamson, “Contact of nominally flat surface”, Proc. R. Soc. London Ser. A295, 300, 1966.
    [23] B. J. Hamrock, S. R. Schmid, and B. O. Jacobson, Fundamentals of Fluid Film Lubrication, 2nd ed., Marcel Dekker, Inc., New York, Chapter 7, 2004.
    [24] N. Patir and H. S. Cheng, ”An Average Flow Model for Determining Effects of Three
    -Dimensional Roughness on Partial Hydrodynamic Lubrication”, ASME J. Lubr. Technol., 100, 12, 1978.
    [25] J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, 2nd ed., Taylor & Francis, Philadelphia, PA, Chapter 3, 1997.
    [26] C. Gerald and P. O. Wheatley, Applied Numerical Analysis, 6th ed., Addison- Wesley, Reading, MA, 48–52, 1999.
    [27] S. Thagella, A. K. Sikder, and A. Kumar, “Tribological Issues and Modeling of Removal Rate of Low-k Films in CMP”, J. Electrochem Soc., 151, G205, 2004.
    [28] F. Sugimoto, Y. Arimoto, and T. Ito, ”Simultaneous Temperature Measurement of Wafers in Chemical Mechanical Polishing of Silicon Dioxide Layer”, Jpn. J. Appl. Phys., 34, 6314, 1995.
    [29] http://electronicmaterials.rohmhaas.com/products/default.asp?product=IC1000, Roh-
    m and Haas, US, Polishing Pads IC1000 product brochure, 2004.

    下載圖示 校內:立即公開
    校外:2007-07-27公開
    QR CODE